Kimberly Glass: Multi-Omic Data Integration In Gene Regulatory Networks

Поделиться
HTML-код
  • Опубликовано: 13 янв 2021
  • Kimberly Glass gives a talk at the Women in Network Science (WiNS) seminar on January 13, 2021.
    Abstract: Rapidly evolving Omics technologies are providing unprecedented amounts of data that can yield new insights into biological processes, allowing us to develop a more unified understanding of the development and progression of complex disease. In most cases a single gene or pathway cannot fully characterize a disease. Rather, disease-related changes often involve simultaneous alterations to the genome, epigenome, transcriptome, and proteome of the cell. Networks provide a powerful approach for identifying disease-related biological mechanisms by establishing a framework for integrating multiple types of Omics information. Importantly, complex shifts in the regulatory networks can provide important insights into the underlying mechanisms influencing disease state. Our group has developed a suite of methods that support: (1) effective integration of multi-omic data to reconstruct gene regulatory networks; (2) analysis of these networks to identify changes in disease state; and (3) modeling of context-specific networks in order to link regulatory alterations with specific phenotypes. In this talk, I will review how we have used these approaches to discover new features of disease and to understand the complex regulatory processes at work across individuals.
    Bio: Kimberly Glass is an assistant professor at Brigham and Women's Hospital, a teaching hospital of Harvard Medical School. Her research focuses on integrating multiple sources of omics data and on understanding how biological mechanisms and contexts affect structure of gene regulatory networks. Her research group's primary interests are in developing methods and building computational tools that merge an appreciation of network analysis, biological function and translational impact.

Комментарии •