Harvard University Admission Interview Tricks | Find x=?

Поделиться
HTML-код
  • Опубликовано: 24 ноя 2024

Комментарии • 21

  • @hamdamoverali
    @hamdamoverali 5 дней назад +4

    My solution is way easier (it took less than a minute): 1) I rewrote the equation as 1/x+sqrt(1/x+1)=5. 2) Then, I added 1 to both sides of the equation 1/x+1+sqrt(1/x+1)=6. 3) Then, by simply substituting t=sqrt(1/x+1), we get a simple quadratic equation of t^2+t-6=0. The solution of which are -3 and 2. 4) When we plug in the value of sqrt(1/x+1)=-3 has no real solutions ( by the way, if it did not violate the laws of mathematics, the answer choice of 1/8 would be correct). 5) sqrt(1/x+1)=2 1/x+1=4 x=1/3

    • @superacademy247
      @superacademy247  5 дней назад +1

      That's a great simplification! 👍Thanks for sharing your clever solution! 🤩

  • @에스피-z2g
    @에스피-z2g 4 дня назад

    1/x=y
    y+rt(1+y)=5
    rt(1+y)=5-y
    y

  • @ManojkantSamal
    @ManojkantSamal 5 дней назад

    X=1/8, or 1/3
    ^=read as to the power
    *=read as square root
    As per the question the 2nd term is
    *{(x+1)/x}
    =*{(x/x)+(1/x)}
    =*{1+(1/x)}
    As per question
    (1/x)+*{1+(1/x)}=5
    Let (1/x)=R
    R+*(1+R)=5
    *(1+R)=5-R
    Take the square
    {*(1+R)}^2=(5-R)^2
    1+R=R^2+25-10R
    R^2-10R-R+25-1=0
    R^2-11R+24=0
    R^2-8R-3R-24=0
    R(R-8)-3(R-8)=0
    (R-8(R-3)=0
    R-8=0 or R-3=0
    R=8 or R=3
    1/x=8 or 1/x=3
    X=1/8 or x=1/3

  • @raghvendrasingh1289
    @raghvendrasingh1289 5 дней назад +2

    1 + √{ x(x+1) } = 5x
    x(x+1) > 0 ( because x can't be zero and x = - 1 does not satisfy the equation)
    either x < - 1 or x > 0
    also 5x > 1
    finally x > 1/5
    now x(x+1) = 25 x^2 - 10 x + 1
    24 x^2 - 11 x + 1 = 0
    (8 x-1) (3x-1) = 0
    x = 1/8 , 1/3
    but x > 1/5
    hence only solution is x = 1/3
    we can verify it.

    • @heel57
      @heel57 5 дней назад +1

      that argument x>1/5 is crucially missing in the video

    • @superacademy247
      @superacademy247  5 дней назад

      Thanks for sharing your perspective 🙏💕🥰

  • @giuseppemalaguti435
    @giuseppemalaguti435 5 дней назад

    t=1/x...t+√(1+t)=5...1+t=25+t^2-10t...t^2-11t+24=0...t=(11+5)/2=8...t=(11-5)/2=3..x=1/8,1/3..1/8ko

  • @michelberix4565
    @michelberix4565 5 дней назад +2

    How is it possible that sometimes a solution has to be rejected (in this case x=1/8)? You followed all the right steps...

    • @jorgepinonesjauch8023
      @jorgepinonesjauch8023 5 дней назад

      No debemos olvidar que muchas veces por el hecho, que una ecuación nos conduzca a una ecuación de segundo algunas de ellas son soluciones extrañas y haya que comprobar en la ecuación original

    • @patk5724
      @patk5724 5 дней назад

      There is a term called extraneous roots, in most cases of even roots being square root, 4th root, 6 root and so etc can tend to end up into a result or two that is rejected....
      Take for example:
      x = 4
      Square both sides:
      x^2 = 16
      sqr(x^2) = sqr16
      x = +/- 4, now (-4) is in
      this reasoning fact is rejected, because x = 4...
      Now let us cube both sides of x = 4... cube root is an odd root.
      x^3 = 4^3
      x^3 = 64
      cube-root(x^3) = cubeR(64)
      x = 4, notice we don't run into any issue when use a
      odd root...

    • @kareolaussen819
      @kareolaussen819 5 дней назад

      @@patk5724It is not necessarily true that there is no issue with odd roots! If one wants to define the cube root (f.i) of complex numbers it is difficult/unnatural to do in such a way that (-1)^(1/3)=-1. Most mathematical libraries, including Wolfram Alpha, will return a complex number, (-1)^(1/3)=(1+i√3)/2 or a numerical approximation of this number.

  • @jorgepinonesjauch8023
    @jorgepinonesjauch8023 5 дней назад +2

    Lo hice asignando t=✓(1+1/x) lo que conduce a la ecuación t^2+t-6=0 con t1=-3 y t2=2 se descarta el valor -3 dando como única solución t2=2, y regresando a la variable original en x, y reemplazando t=2 nos queda la ecuación ✓(1/x+1) =2 dónde nos da que x=1/3 es la única solución 😊

    • @superacademy247
      @superacademy247  5 дней назад

      Thanks for sharing your method 😎💯💕🥰✅💪

  • @deryakuru6548
    @deryakuru6548 5 дней назад

    Square root of 9 =minus -3 and +3 isnt it? So if we take X=equal to minus 3 ,it verifies the equation

  • @walterwen2975
    @walterwen2975 5 дней назад

    Harvard University Admission Interview Tricks: 1/x + √[(x + 1)/x] = 5; x =?
    1 > x > 0; 1/x + √[(x + 1)/x] = 1/x + 1 + √[(x + 1)/x] = 5 + 1
    (x + 1)/x + √[(x + 1)/x] = 6, Let: y = √[(x + 1)/x]; y > 0
    (x + 1)/x + √[(x + 1)/x] = y² + y = 6, y² + y - 6 (y - 2)(y + 3) = 0, y > 0, y + 3 > 0
    y - 2 = 0, y = 2 = √[(x + 1)/x], (x + 1)/x = 2² = 4, 4x = x + 1; x = 1/3
    Answer check:
    x = 1/3, 1/x = 3: 1/x + √[(x + 1)/x] = 3 + √[3(1/3 + 1)] = 3 + 2 = 5; Confirmed
    Final answer:
    x = 1/3

  • @НатальяТкаченко-ъ1з

    1/X + [(X+2)/X]^1/2 = 5
    [(X+1)/X]^1/2 = 5 - 1/X
    [[(X+1)/X]^1/2]^2 = (5 - 1/X)^2
    (X+1)/X = [(5X -1)/X]^2
    (X+1)/X=(25X^2 -2×5X×1+1^2)/X^2
    Умножим обе стороны уравнения на X^2
    X(X+1)=25X^2 - 10X + 1
    X^2 +X = 25X^2 -10X + 1
    25X^2- 10X + 1 - X^2 -X = 0
    24X^2 - 11X + 1 = 0
    D= (-11)^2 - 4×24×1= 25
    D^1/2= 5
    X=(11+5)/(24×2)=1/3
    X=(11-5)/48=1/8
    Ответ: 1/3 и 1/8
    D

  • @mpraonelavellinelavelli7096
    @mpraonelavellinelavelli7096 5 дней назад

    Sir you are very very very slow

    • @superacademy247
      @superacademy247  5 дней назад

      Thanks for the feedback! I'm working on making the videos more concise.I'll try to explain the concepts more quickly in future videos.🙏