Weighted gene co-expression network analysis

Поделиться
HTML-код
  • Опубликовано: 2 янв 2025

Комментарии • 16

  • @Pongant
    @Pongant 4 года назад +3

    This presentation really helped with my Master Thesis. It is so much more informative to work with modules of DEGs than just investigating single genes...

  • @user-ze7tl2dw4i
    @user-ze7tl2dw4i 5 лет назад +4

    just want to say great lecture. really appreciate this.

  • @EdoardoMarcora
    @EdoardoMarcora 9 лет назад +7

    Thanks for putting the course material and lecture online! One question... is the second part of this lecture available as a video on RUclips?

  • @eabpajarillo
    @eabpajarillo 10 лет назад

    I still haven't finished but the introduction looks so promising. I will watch it later. Hope to have more discussion later.

  • @nataliec3186
    @nataliec3186 6 лет назад

    Wonderful explanation

  • @h3nrasouli
    @h3nrasouli 5 лет назад

    Excellent.

  • @michielBong
    @michielBong 4 года назад

    Nice lecture!

  • @sailing26
    @sailing26 11 лет назад

    Hi. I really enjoyed the lecture. Where do I find the second half? Thank you.

  • @whiteorchidfaye
    @whiteorchidfaye 10 лет назад

    really powerful tool!!!

    • @JohnWayneGao
      @JohnWayneGao 9 лет назад

      +whiteorchidfaye are you using it for RNA seq?

    • @munsifshad8283
      @munsifshad8283 3 года назад

      @@JohnWayneGao you can use it with rna seq after normalization

  • @eabpajarillo
    @eabpajarillo 10 лет назад

    Is this better than Cytoscape?

  • @amrendrakumar2060
    @amrendrakumar2060 3 года назад

    Sir I need next part video links

  • @HunterDriguez
    @HunterDriguez 4 года назад

    I swear, no matter how much I try to intuitively understand eigengenes I fail miserably. I wonder how you go from your expression data to a (eigene?) value for each module at each sample, which is the output you get when you run the code.

    • @emrecaglayan1329
      @emrecaglayan1329 4 года назад +2

      Module eigengene is the first principal component of the genes in that module. In intuitive terms, it is the made-up gene that represents all genes in that module the best. If you want to understand principal component analysis I recommend statquest's video on that on youtube.