Japanese Math Olympiad Problem | A Very Nice Geometry Challenge | 2 Different Methods

Поделиться
HTML-код
  • Опубликовано: 10 ноя 2024

Комментарии • 24

  • @Istaphobic
    @Istaphobic 6 месяцев назад +3

    I did it the second way, but the first way is much more elegant. Always prefer a geometric solution over a trigonometric one. Just more beautiful.

  • @gabri41200
    @gabri41200 6 месяцев назад

    My method:
    Let H be the height of triangle ABC with respect to A (extending the BC line and tracing the height from point A).
    Let E be the intersection point between H and BC line's extension.
    And X = BD = DC
    DE = H (equilateral triangle)
    BE = H-X
    Tg30° = H/(H+X)
    Doing some algebra, we get the relation:
    X= H(root3 - 1)
    Lets see the tangent of angle ABE = 180°- tetha
    Tg (180-tetha) = H/(H-X)
    Lets substitute X
    Tg (180-theta) = H/(H - H(root3-1))
    Tg (180-tetha) = 1/(2-root3)
    Simplifying
    Tg (180-tetha) = 2+ root3
    I know that tg 75° = 2+root3
    So,
    Tg(180-tetha)= tg 75°
    180-tetha=75
    Tetha= 105°

    • @gabri41200
      @gabri41200 6 месяцев назад +1

      Oh, now i saw the video, and this is the second method 😅

  • @marcgriselhubert3915
    @marcgriselhubert3915 6 месяцев назад

    This problem is simple if we use an adapted orthonormal. We choose center D and frst axis (DC). The problem is independant of the length DC = BD, we choose this length equal to 1 for example.
    So the equation of (CA) is y = -tan(30°).(x -1) or y = (-sqrt(3)/3).x + sqrt(3)/3. The equation of (DA) is y = -x. At point A, at the intesection, we have: (3 -sqrt(3)).x = sqrt(3) so x = (1 +sqrt(3))/2 when simplified. So we have A((1+sqrt(3))/2; -(1+sqrt(3))/2)
    As B(-1;0) then VectorBD((3+sqrt(3))/2; -(1+sqrt(3))/2) (form (m;n)), m/n = -1/sqrt(3) = -sqrt(3)/3 is equal to tan(theta), so theta = 120°

  • @soli9mana-soli4953
    @soli9mana-soli4953 6 месяцев назад

    Being AEC a 30,60,90 degree right triangle if AE = X => EC = X√ 3
    Being AED a right isosceles triangle AE = ED = x
    setting EB = y we can write the following identity:
    x - y = x√ 3 - x (because BD = CD)
    y = 2x - x√ 3
    Considering triangle AEB we can write:
    tan (180 - theta) = x/(2x - x√ 3) = 2 + √ 3
    that means that 180 - theta = 75°
    theta = 180 - 75 = 105

  • @bennyhsiao8435
    @bennyhsiao8435 6 месяцев назад

    second method

  • @TheAlavini
    @TheAlavini 2 месяца назад +1

    Nice solution. I liked it.

  • @MosesOluwasegun-sx1kk
    @MosesOluwasegun-sx1kk 6 месяцев назад

    Application of sine rule can as well solve the problem.
    Sin(30)/sin(15)=sin(theta)/sin(135-theta)
    Then using trig. identity for sin(135-theta).
    Theta=-75 which is equivalent of 105 following anticlockwise measure.
    Please confirm

  • @michaeldoerr5810
    @michaeldoerr5810 6 месяцев назад

    Just one question, could the adapted orthonormal be applied to the last geometry problem?

  • @giuseppemalaguti435
    @giuseppemalaguti435 5 месяцев назад

    ctgθ=(√2sin15/sin30)-1..θ=-75..θ=105

  • @JAMESYUN-e3t
    @JAMESYUN-e3t 6 месяцев назад

    Excellent solutions🎉🎉🎉

  • @user-dq6jf9ru9e
    @user-dq6jf9ru9e 2 месяца назад

    15:02 How did we figure out that α=75°?

  • @User-jr7vf
    @User-jr7vf 6 месяцев назад

    I did second method before checking the solution, but first method is much more elegant

  • @giuseppemalaguti435
    @giuseppemalaguti435 6 месяцев назад

    tgθ=-2-√3...θ=-75...θ=105

  • @mohamedsalah5525
    @mohamedsalah5525 5 месяцев назад +1

    120

  • @psvasan61
    @psvasan61 Месяц назад

    Why always going round and round it can be solved simply

  • @alamshaikhahmad2415
    @alamshaikhahmad2415 6 месяцев назад

    45-30=15+90=105÷360×314.159268

  • @quigonkenny
    @quigonkenny 6 месяцев назад

    As ∠BDA is the external angle to ∆ADC at D:
    ∠BDA = ∠DCA + ∠CAD
    45° = 30° + ∠CAD
    ∠CAD = 45° - 30° = 15°
    As BD is a straight line, ∠ADC = 180°-45° = 135°.
    Draw DE, such that E is the point on CA where ∠CED = 30°. As ∠CED = ∠DCE = 30°, ∆EDC is an isosceles triangle, DC = DE, and ∠EDC = 180°-(30°+30°) = 120°.
    As ∠ADC = 135°, ∠ADE = 135°-120° = 15°, so ∠ADE = ∠EAD, ∆DEA is an isosceles triangle, ∠DEA = 180°-(15°+15°) = 150°, and DE = EA.
    As BD = DE, then ∆BDE is an isosceles triangle. As ∠ADE = 15° and ∠BDA = 45°, ∠BDE = 60°, so ∠DEB = ∠EBD = 60° as well, and ∆BDE is an equilateral triangle, and EB = BD = DE.
    As BE = EA, ∆BEA is an isosceles triangle. As ∠DEA = 150° and ∠DEB = 60°, ∠BEA = 150°-60° = 90°, so ∠ABE = ∠EAB = 45°.
    ∠ABD = ∠EBD + ∠ABE
    θ = 60° + 45° = 105°

  • @キャティー000
    @キャティー000 6 месяцев назад

    Easy、but good question🙂

  • @fahriansyahyt6794
    @fahriansyahyt6794 Месяц назад +1

    bruhh, how could you know that 2 + sqrt(3) is equat to tan75.., can you explain it to me, thanks anyway

    • @rizwankhan-st5sl
      @rizwankhan-st5sl Месяц назад

      Here , tanA= 2 + √3
      Since , tan2A = 2tanA/(1-tan^A)
      Therefore,
      tan2A = 2(2 + √3)/(1-(2 + √3)^2)
      = 2(2 + √3)/(1- 4 - 4√3 - 3)
      = 2(2+√3)/(-6-4√3)
      = -2(2+√3)/2(3+2√3)
      = -(2+√3)/(3+2√3)
      = -(2+√3)*(3-2√3)/(3+2√3)*(3-2√3)
      = -( 6 - 4√3 + 3√3 - 6)/(9-12)
      = -(-√3)/(-3)
      = -1/√3
      tan2A = tan(π - π/6)
      Hence ,
      2A = 5π/6
      A = 5π/12
      Or A = 75°

  • @ThuyHanhNguyen-yq7iw
    @ThuyHanhNguyen-yq7iw 6 месяцев назад

    Quá dài dòng