Proof: Ore's Theorem for Hamiltonian Graphs | Sufficient Condition for Hamilton Graphs, Graph Theory

Поделиться
HTML-код
  • Опубликовано: 1 фев 2025

Комментарии • 121

  • @WrathofMath
    @WrathofMath  3 года назад +9

    Small correction: around 10:24 when I write out the cycle that would cause the contradiction, the second to last thing in the cycle is "2", I meant to write "v_2". Let me know if you see anything else that looks wrong or if you have any questions!
    Support the production of this course by joining Wrath of Math as a Channel Member for exclusive and early videos, original music, and upcoming lecture notes for the graph theory series! Plus your comments will be highlighted for me so it is more likely I'll answer your questions!
    ruclips.net/channel/UCyEKvaxi8mt9FMc62MHcliwjoin
    Graph Theory course: ruclips.net/p/PLztBpqftvzxXBhbYxoaZJmnZF6AUQr1mH
    Graph Theory exercises: ruclips.net/p/PLztBpqftvzxXtYASoshtU3yEKqEmo1o1L

  • @phosp25
    @phosp25 24 дня назад +1

    I got this proof in today's discrete mathematics oral exam, and I knew it only bacause I watched this video. Huge thanks to you for this clear and concise explanation!

  • @Joachim1010
    @Joachim1010 11 месяцев назад +2

    Fabulous explanation. I had to rewind sometimes because my brain wouldn't compute immediately.

    • @WrathofMath
      @WrathofMath  11 месяцев назад +1

      Glad to help - thanks for watching!

  • @oSamiXD
    @oSamiXD 4 года назад +6

    You are amazing at explaining concepts, thank you. I don't know what my lecturer is talking about half the time.

    • @WrathofMath
      @WrathofMath  4 года назад +1

      I'm so glad it helped! Thanks a lot for watching and I'm sorry to hear your lecturer has not been clear for you, I hope that improves!

  • @netanelkomm5636
    @netanelkomm5636 5 месяцев назад

    Thank you so much for this video! It really helped me in an exercise I was given. The observation that if an edge from x to a vertex v_i on the path exists then the edge from y to v_i-1 must not exist is beautiful in my opinion. Cool theorem!

    • @WrathofMath
      @WrathofMath  5 месяцев назад +1

      Absolutely! Thank you for watching!

  • @ilhomsadriddinov3627
    @ilhomsadriddinov3627 Год назад +2

    I watched, re-watched, played, replayed to reach the point when I said "aha". Thanks for the great explanation!

  • @ilanmarom5268
    @ilanmarom5268 3 года назад +4

    Best explanation online!
    Thank You!

    • @WrathofMath
      @WrathofMath  3 года назад +1

      My pleasure, thanks for watching! If you're looking for more graph theory, check out my graph theory playlist! ruclips.net/p/PLztBpqftvzxXBhbYxoaZJmnZF6AUQr1mH

  • @PunmasterSTP
    @PunmasterSTP 8 месяцев назад +1

    This was literally one of the edgiest proofs I've ever seen!

  • @harshitgupta6519
    @harshitgupta6519 4 года назад +8

    Thanks a great explanation.
    I wonder could this be extended to proving that a graph G contains a Hamiltonian path if for every vertex pair (u,v) in G, deg(u) + deg(v) >=n-1 where n is the number of vertices in the graph.

  • @achrafBadiry
    @achrafBadiry 7 месяцев назад

    that is the perfect persuasive proof for ore's theorem. thank you very much

  • @hongyanwu3025
    @hongyanwu3025 4 года назад +3

    This is really helpful bro! I can't even understand what my chinese version of text book was talking about lol.

    • @WrathofMath
      @WrathofMath  4 года назад

      So glad it was helpful! Thanks a lot for watching!

  • @kathirr.m.2815
    @kathirr.m.2815 3 года назад

    I have graph theory exam tomorrow.You really saved me!!

    • @WrathofMath
      @WrathofMath  3 года назад

      So glad to hear it, hope it goes well!

  • @sebastiand7812
    @sebastiand7812 3 года назад

    Very clear explanation of the proof. Very professional, from a math student

  • @SimpleLivingHigherThinking
    @SimpleLivingHigherThinking 8 месяцев назад +1

    Thank you for such a simple and clear explanation 😁

    • @WrathofMath
      @WrathofMath  8 месяцев назад

      Glad to help! Thank you for watching!

  • @AmberSystem
    @AmberSystem 5 лет назад +7

    Thank you, this really helped.

    • @WrathofMath
      @WrathofMath  5 лет назад

      You’re welcome! I’m glad it helped and thank you for your support and a great suggestion!

  • @kamali445
    @kamali445 3 года назад +1

    Ohh my god tq for saving my life... This was very difficult for me to understand u made it very clear.. 🤩🤩tq sir

    • @WrathofMath
      @WrathofMath  3 года назад +1

      So glad it helped! Thanks for watching and check out my Graph Theory playlist if you're looking for more on the topic! ruclips.net/p/PLztBpqftvzxXBhbYxoaZJmnZF6AUQr1mH

    • @kamali445
      @kamali445 3 года назад +1

      @@WrathofMath sure I'll continue to watch ur channel ...

  • @권민석-p3j
    @권민석-p3j Год назад

    Thanks for the video! I came up with the idea also but your video clarified my thought process.

  • @TanishkaGham
    @TanishkaGham 2 месяца назад

    Very nice explanation! But I didnt understand why solving the extreme case solves the question at hand. in any graph that satisfies the given degree condition there could be a case where no hamiltonian paths exist , wont the proof break down here?

  • @MkhanyisiMadlavana
    @MkhanyisiMadlavana 5 лет назад +2

    That drawing was very helpful

    • @WrathofMath
      @WrathofMath  5 лет назад +1

      Thanks for watching and I am glad you found the drawing helpful! I definitely agree it is really helpful, sometimes a drawing is really critical in helping to explain what is going on in a Graph Theory proof, otherwise it can be quite challenging to make sense of all these vertices with different subscripts, and what significance they have.

  • @ramumaha2779
    @ramumaha2779 4 года назад

    Awesome crisp explanation

    • @WrathofMath
      @WrathofMath  4 года назад

      Thanks for watching and I am glad it was clear! Let me know if you have any video requests!

  • @niazazeez
    @niazazeez Год назад

    WOW! I read the blob of words in my textbook for Proof of Dirac's Theorem (which rolls in Ore's Theorem into it) over and over and over, and tried to sketch out examples it did not make any sense. Your explanation captured in half a whiteboard makes it so clear now. Why can't proofs in textbooks be structured and readable, and break down the flow? It is almost as if they intentionally want to limit the number of people who can understand it, so that only "elite mathematicians" can get through them.

    • @WrathofMath
      @WrathofMath  Год назад

      Thanks so much, I am glad this helped! It takes a lot of effort to understand these concepts at times. I don't know what textbook you're using, but most of my graph theory playlist is based on the book by Chartrand and Zhang. There is an affiliate link to it in the description of the video. It's a great textbook, and while some of its proofs left me scratching my head for a little while, overall they are very well done. Good luck!!

    • @niazazeez
      @niazazeez Год назад

      ​@@WrathofMath I made a mistake above, the text (which makes more sense now when I read it after watching the videos) does not roll in Ore's theorem, but proves it the same way as how you did in the latter part of the Dirac's Theorem video.
      I am using Chartand and Zhang too. The textbook is great. It is very lucid and engaging. It weaves the content through history, introduces interesting problems, holds the suspense for problems solved in later chapters, describes everything very clearly with examples and diagrams. But I hit a wall every time I read something that is written between "Proof:" and □. Not just is in this text, this is a general challenge I have with textbooks of proof-based courses. Channels like yours are the saving grace.

  • @originalandfunnyname8076
    @originalandfunnyname8076 4 года назад +1

    Could you explain why we can add edges to original graph? I feel like if we do, we don't prove theorem that G is hamiltonian but that G' is hamiltonian and it doesn't conclude that G is also hamiltionian. For example in this proof you use the fact that there is hamiltionian path in G', but G doesn't have to also have it.
    Besides, very good explanation. I'm studying for my exam and your videos are very helpful, thanks a lot!

    • @WrathofMath
      @WrathofMath  4 года назад +5

      Thanks for watching and great question! Sometimes in these contradiction proofs it can be easy to lose track of where we started from once we finish. You are right that we didn't exactly show G is Hamiltonian, we showed G' is Hamiltonian, but here is why that is sufficient to prove G is Hamiltonian.
      We assumed, for contradiction, that there exists a graph G contradicting our desired result. So we assumed G fits our degree sum condition, but isn't Hamiltonian. It may be the case that we can add edges to G and still not have a Hamiltonian graph, so we arbitrarily add edges until the addition of any more edges would make it Hamiltonian and call this graph G'. What we are doing is saying, if this graph G exists, then this more extreme version G' also exists.
      We then show a contradiction regarding the degrees of G'. Thus, since the existence of G implied the existence of G', which implied a contradiction, G cannot exist. In other words, a graph contradicting our claim cannot exist.
      I'm very glad the lessons have been helpful. Let me know if that explanation helps or if you have any more questions!
      EDIT: Note that it's possible that we cannot add any edges to G without making it Hamiltonian, in which case G equals G'.

    • @originalandfunnyname8076
      @originalandfunnyname8076 4 года назад +2

      @@WrathofMath Okay, I think I understand now. When we encounter contradiction regarding the degrees of G', we're just saying that the assumption that there is 'counter-example' was wrong (not directly that G IS in fact Hamiltonian). Everything else besides this assumption was logical reasoning so it can't be wrong. Thanks! :)

    • @ArchAngel1508
      @ArchAngel1508 Год назад +1

      @@WrathofMath I think the explanation requires a refinement. What the proof really shows is that G' has to be Hamiltonian, but the logic doesn't necessarily say that G is Hamiltonian. By G' being Hamiltonian, it must have been the case that we just cannot add to G to get G' because, somehow, adding edges caused G' to become Hamiltonian. Then we see now the logic! It must have been that G was already "maximally not Hamiltonian" which we thought was G'. Thus G is what we wanted G' to be and by the same proceeding logic, G is Hamiltonian. It feels like the video glossed over that extra step in logic. I feel that just saying "G implied G' and G' implied a contradiction" only really says that the implication just wasn't true, not that the original implier's properties somehow fails.

  • @vanshikasinghal4948
    @vanshikasinghal4948 4 года назад

    So at 10:00 we say that our crucial observation is correct because G' cannot contain a Hamiltonian cycle but haven't we assumed that adding any additional edge to G' would make it hamitonian and that's what we are doing when we are joining y and v_i-1 by an edge?

    • @WrathofMath
      @WrathofMath  4 года назад +1

      Thanks for watching, Vanshika, and great question! We are not considering adding an edge at that point of the proof, what we are doing is noticing that a certain type of edge cannot be in the graph. So we're not saying "if we add this edge, this happens", we're saying "this edge cannot be in our graph, because if it were then the graph would have a Hamilton cycle, which we know it does not". We know our graph has edges, and we're identifying a type of edge we know it can't have - edges that join y to a vertex preceding a neighbor of x. Does that make sense?

  • @SHASHANKRUSTAGII
    @SHASHANKRUSTAGII 4 года назад

    proof follows from Pigeonhole principle, IISCR, PUNE, INDIA NPTEL lecture series explains it so well
    you are also good.

  • @골D에이스
    @골D에이스 4 года назад +1

    Thank you for all your videos. And, Could you explain also about tutte's wheel theorem? It is too hard..

    • @WrathofMath
      @WrathofMath  4 года назад +2

      You're very welcome! Thank you for watching and for your request - though I am not familiar with that theorem. I'll add it to my list and research it a bit when I can!

    • @골D에이스
      @골D에이스 4 года назад

      @@WrathofMath thank you so much.
      your videos were very helpful.
      They are the best video I've seen.
      I think your explanation is amazing.....
      I couldn't understand menger's theorem for several days.
      But your video makes me understand it.!!!!!!! really thank you.
      I'm now taking the graph theory classes in college and having trouble to understand them..

      But after I've seen about 80 videos that you uploaded, I could feel fun to graph theory.
      Your video helped me a lot:)

    • @WrathofMath
      @WrathofMath  4 года назад

      Messages like yours help keep me going, thank you so much for your kind words! So glad the lessons have helped and good luck in your classes!

  • @malharnandurkar890
    @malharnandurkar890 2 года назад

    Thanks a lot!!, Great video!! Helped me a lot

    • @WrathofMath
      @WrathofMath  2 года назад

      Glad to hear it, thanks for watching!

  • @giannis5344
    @giannis5344 Год назад

    Hello, great video! Really helpful.
    I have a question, how can we be sure that a graph G' exists, meaning a graph that putting any edge would make it Hamiltonian, i mean i get it for sure but just the fact that a complete graph is hamiltonian is enough to prove it?
    I have an exam in 4 days and im planning on using this proof for ores theorem since the one on the book is kinda complicated for me so i want to make sure that my professor won't be weird because i used another proving method and not his.
    Thanks!

  • @NETHER2348
    @NETHER2348 10 месяцев назад

    can you explain the travelling salesman problem

  • @itskshitij
    @itskshitij 5 лет назад +2

    I'm not sure I follow why you can add edges to the graph without changing the initial assumption here, ie I'm not convinced G is Hamiltonian. From the contradiction, I'm getting that G' is Hamiltonian, but I'm not I follow how that's also the case for G.

    • @binukj7970
      @binukj7970 4 года назад

      What the proof contradicts is the existence of a maximally hamiltonian path with the same number of or more edges than G. Hence it proves that G is a hamiltonian cycle

  • @Itay12353
    @Itay12353 3 года назад

    so helpful thanks man

    • @WrathofMath
      @WrathofMath  3 года назад

      My pleasure, thanks for watching!

  • @tesfalegntadesse3123
    @tesfalegntadesse3123 2 года назад

    thanks sir!
    can you show me the proof of the this question please? i need your help!
    Let G be an orientation of a connected graph with at least two vertices
    such that every vertex v of G satisfies that its in-degree and out-degree is
    the same. Show that G has a closed (directed) walk containing each edge
    exactly once.

  • @ahsanulhaq8056
    @ahsanulhaq8056 8 месяцев назад

    would please provide the proof of; Let G be a connected graph of order n ≥ 3 with vertex connectivity κ(G) and independence number α(G). Ifκ(G) ≥ α(G), thenG is Hamiltonian.

  • @vv9llb
    @vv9llb 2 года назад +1

    2. Show that if G is Eulerian, then every block (see Chapter 7 for the notion of blocks) of G is Eulerian

  • @Adrian-zb2lu
    @Adrian-zb2lu 2 года назад

    Hi, I have a question, you are trying to contradict that G isn't hamiltonian, and you come to the conclusion that the initial condition of the degree is not met for the G' graph. But how can you ensure that it is also true for G when G' it has other additional edges and has more connections?

    • @WrathofMath
      @WrathofMath  2 года назад

      Thanks for watching and good question! The contradiction is that if this graph G that isn't hamiltonian exists, then there also exists this other graph G' which contradicts our assumptions. This forbids the supposed graph G from existing, as it leads to a contradiction via this G' construction.
      You're right that we aren't necessarily contradicting a feature of G, but we are contradicting a feature of something that MUST exist if G does. Hence, G mustn't exist. Hope that helps!

    • @Adrian-zb2lu
      @Adrian-zb2lu 2 года назад

      ​@@WrathofMath If I understood good, for have a contradiction you just need an example of a non hamiltonian graph that can contradict the degrees condition. And the graph G' is exactly this example, so why don´t use since the beginning G'? That´s what I don´t understand. Greetings from Spain!

  • @MationINK
    @MationINK 3 года назад

    banging video mate

    • @WrathofMath
      @WrathofMath  3 года назад

      Thank you! If you're looking for more graph theory, check out my playlist! ruclips.net/p/PLztBpqftvzxXBhbYxoaZJmnZF6AUQr1mH

  • @arturssitdikovs4480
    @arturssitdikovs4480 5 лет назад +1

    Thanks a lot ! Just got an assignment where I have to proof Ores theorem. Maybe you can proof Dirak's theorem too? :D

    • @WrathofMath
      @WrathofMath  5 лет назад +3

      You're very welcome, I'm glad to help and thank you for watching! Absolutely, I may get to recording it this weekend so it would be out sometime this coming week. Give it a go yourself in the meantime! The proof we'll go over has some similarities to this one on Ore's Theorem. We'll begin with a longest path in our graph, make an argument for what must be a Hamiltonian cycle in the graph, and show that if this is not Hamiltonian as we claim it is, then we would be able to find a path longer than the path we initially assumed was the longest. So that's the back of the box summary. See you later this week for the proof and thanks for the request!

    • @WrathofMath
      @WrathofMath  5 лет назад +3

      Here it is! Thanks again for the request! ruclips.net/video/S7bORlkfwsA/видео.html

  • @MrMsaar
    @MrMsaar 3 года назад

    great video!

  • @jigyasj.goswami0485
    @jigyasj.goswami0485 4 года назад

    Thank you so much. It's very helpful 😊😊

    • @WrathofMath
      @WrathofMath  4 года назад

      Glad it helped! You're welcome and thanks for watching!

  • @Itay12353
    @Itay12353 3 года назад

    can you make a video about Erdos Szekers proof?

  • @amkhrjee
    @amkhrjee Год назад

    This was a fantastic explanation of the proof for this theorem. Thanks a lot for making this video!

    • @WrathofMath
      @WrathofMath  Год назад

      Thanks a lot, glad it was clear!

  • @jamesthorne8910
    @jamesthorne8910 3 года назад

    If you consider a cyclic graph such as C5, which is Hamiltonian, then Ore's theorem doesn't hold?

    • @WrathofMath
      @WrathofMath  3 года назад

      Thanks for watching! This is an important part of interpreting conditional statements. Ore's theorem tells us if a certain degree sum condition is satisfied, then the graph will be Hamiltonian. This means the degree sum condition in Ore's theorem is sufficient for a graph to be Hamiltonian. However, this condition is not necessary, and the theorem says nothing about graphs that don't fit the condition. If a graph doesn't fit the condition, like C5, it may still be Hamiltonian. The degree sum condition is sufficient, but it is NOT necessary. Does that make sense?

  • @LightningXBolttt
    @LightningXBolttt 4 года назад

    Thank You,Your Videos really help alot.
    Can you make a video on this theorem:
    An Euler graph G is arbitrarily traceable from a vertex v in G if and only if every circuit in G contains v.

  • @MrRyanroberson1
    @MrRyanroberson1 4 месяца назад

    12:34 can't we subtract another 1 for x itself?

    • @MrRyanroberson1
      @MrRyanroberson1 4 месяца назад

      ... and as a result could we make a weaker constraint that deg(x)+deg(y)>=n-1?

  • @vasanthgandhi3993
    @vasanthgandhi3993 10 месяцев назад

    Thank you ,buddy
    Well Understood

  • @drj9403
    @drj9403 4 года назад

    thank you so much that helped.

    • @WrathofMath
      @WrathofMath  4 года назад

      Glad to hear it! Thanks for watching!

  • @chiucalvin5254
    @chiucalvin5254 5 лет назад

    nice video ! Thanks !

    • @WrathofMath
      @WrathofMath  5 лет назад

      You’re welcome and thank you for watching!

  • @lovelynefaithgimeno6573
    @lovelynefaithgimeno6573 2 года назад

    Hi Sir! Your video helps me a lot especially how clearly you'd explain the Ore's theorem. I hope you can make a video about Bondy-Chvatal's Theorem. I can't find any vid here on yt. Thank you in advance, it will be a great help for me since I am currently working on my thesis paper. Have a great day ahead.

  • @suriyars4487
    @suriyars4487 9 месяцев назад

    Nice one

    • @WrathofMath
      @WrathofMath  9 месяцев назад

      Thanks for watching!

    • @suriyars4487
      @suriyars4487 9 месяцев назад

      @@WrathofMath I tried to prove using ore's theorem that Km,n ( complete biparitite graph with m+n >=3 ) will have hamiltonian cycle iff m=n but wasn't able to do it

    • @suriyars4487
      @suriyars4487 9 месяцев назад

      I guess ore’s theorem is just sufficient condition so may not be helpful in this !

  • @binukj7970
    @binukj7970 4 года назад

    vah, that nailed it completely

    • @WrathofMath
      @WrathofMath  4 года назад

      Thanks for watching, I am glad you found it clear!

  • @gleon1602
    @gleon1602 2 года назад

    Very clear and easy to follow. Thank you so much

    • @WrathofMath
      @WrathofMath  2 года назад

      My pleasure, thanks for watching! Let me know if you have any questions and check out my graph theory playlist for more! ruclips.net/p/PLztBpqftvzxXBhbYxoaZJmnZF6AUQr1mH

  • @roscoegillatt7028
    @roscoegillatt7028 5 лет назад

    When you refer to G as being hamiltonian, you are referring to it having a hamiltonian cycle correct? Not referring to the hamiltonian path, just wanting clarification.

    • @WrathofMath
      @WrathofMath  5 лет назад

      Thanks for watching and that's exactly right! I talk a bit about Hamiltonian cycles and paths both in this lesson: ruclips.net/video/2UczS2hQLsI/видео.html but you're correct, a Hamiltonian graph is one with a Hamiltonian cycle!

  • @jhondavidson2049
    @jhondavidson2049 3 года назад

    thank you

    • @WrathofMath
      @WrathofMath  3 года назад

      My pleasure, thanks for watching! If you're looking for more graph theory, check out my playlist! ruclips.net/p/PLztBpqftvzxXBhbYxoaZJmnZF6AUQr1mH

  • @aeturinagapavankalyanreddy3559
    @aeturinagapavankalyanreddy3559 5 лет назад

    Bro ,Can you please do a video on proof of Hall's Marriage theorem,that would help me a lot.
    Thanks in advance.

    • @WrathofMath
      @WrathofMath  5 лет назад +1

      Thanks for watching! I'll have to dig out some cobwebs on that theorem and put it in my queue of lessons, unfortunately I'm quite behind on viewer requests these days as I get so many. I will try to get to it as soon as I can, thanks for the request!

    • @WrathofMath
      @WrathofMath  4 года назад +1

      Your thanks were three months in advance, it's here at last! ruclips.net/video/4tu-H4ES0fk/видео.html

  • @albertmoyanadal781
    @albertmoyanadal781 2 года назад

    thanks!

    • @WrathofMath
      @WrathofMath  2 года назад

      Glad to help! Thanks for watching and check out my graph theory playlist if you're looking for more! ruclips.net/p/PLztBpqftvzxXBhbYxoaZJmnZF6AUQr1mH

  • @forthrightgambitia1032
    @forthrightgambitia1032 2 года назад

    This proof almost makes it seem obvious in reterospect.

  • @chodingninjas7415
    @chodingninjas7415 5 лет назад

    thnx

  • @kamranmehdiyev8561
    @kamranmehdiyev8561 3 года назад

    Cool

    • @WrathofMath
      @WrathofMath  3 года назад +1

      That's for sure, love this proof! And the corollary, Dirac's Theorem! ruclips.net/video/S7bORlkfwsA/видео.html

  • @vv9llb
    @vv9llb 2 года назад

    Show that a Hamilton path of a graph G, if exists, is the longest path in G..

    • @WrathofMath
      @WrathofMath  2 года назад +1

      Thanks for watching! I think that is pretty trivial because by definition a Hamilton path contains all vertices of G. So if a path was longer than the Hamilton path, it'd have more vertices, so it'd have to visit every vertex of the graph (as visited by the Hamilton path) but then also...oh wait, there are no other vertices it could visit to be longer than the Hamilton path, and paths can't revisit vertices, so QED.

    • @vv9llb
      @vv9llb 2 года назад +1

      @@WrathofMath
      How can I contact you
      We have an exam on Saturday

  • @MrinalMondal-mz5jt
    @MrinalMondal-mz5jt 9 месяцев назад

    Lol explanation......
    Even you don't know how to explain a topic .. are you know this?