Euler and Hamiltonian Paths and Circuits

Поделиться
HTML-код
  • Опубликовано: 1 фев 2025

Комментарии • 67

  • @annasergienko409
    @annasergienko409 5 лет назад +42

    Such a clear explanation! And great examples! Thank you, sir!

    • @DoctorO314
      @DoctorO314  4 года назад +1

      Thank you for your kind words. My pleasure.

    • @youmaylikeit3465
      @youmaylikeit3465 3 года назад

      Hi

    • @babyph65
      @babyph65 3 года назад

      yeah, it really helps for my notes and my finals next week

  • @MehSteven
    @MehSteven 2 года назад +1

    Quick and concise explanation. Appreciate it!

    • @DoctorO314
      @DoctorO314  2 года назад +1

      I'm glad it was useful.

  • @rasteapure6887
    @rasteapure6887 8 лет назад +8

    Thank you Sir, very useful tutorial. Especially the Konigsberg problem.

  • @madhurjyadeka5569
    @madhurjyadeka5569 4 года назад +13

    This is why I love to learn from Western professors

  • @bibekacharya9586
    @bibekacharya9586 3 года назад +1

    thank you so much for such a clear explanation

  • @reigngabriellepolvorido6806
    @reigngabriellepolvorido6806 Год назад

    YOU'RE A REAL LIFE SAVER SIR!!!

    • @DoctorO314
      @DoctorO314  Год назад

      I'm glad you found it useful. Thank you for your encouragement.

  • @paci.rossy25
    @paci.rossy25 4 года назад

    This is the video i looking for.

  • @olakaszuba
    @olakaszuba 7 лет назад +5

    Well explained! 2h lecture in 10 min ;)

  • @KingUnrelentingJuggernaut
    @KingUnrelentingJuggernaut 2 года назад +1

    Thank you for this! Recently been playing some brain games on my phone and this is one of the games, up to level 200 in 2 days only 40 levels left /: I’ve been solving these without even knowing the whole backstory and paths kind of just clicked in my head

    • @aayushperecharla3486
      @aayushperecharla3486 Год назад

      what game is this? Sounds interesting.

    • @KingUnrelentingJuggernaut
      @KingUnrelentingJuggernaut Год назад

      @@aayushperecharla3486 the app is called impulse, and the game I liked and finished at the time is called draw one line, there are 235 levels for it that I finished, but there are multiple free games to play on there that are great. You don’t have to pay to play any of it unless you want to with no ads I hope this helps!

  • @ronyspace313
    @ronyspace313 5 лет назад +1

    In 3:13 , path in graph theory is define as a graph where no edge and vertice are repeated.
    So, how come the given diagram is a Euler path? as you've repeated the vertice having three edges more than one time.

  • @vishnuva2950
    @vishnuva2950 3 года назад

    Have a great day sir.
    It was a nice video

  • @shiva1468
    @shiva1468 4 года назад

    Really sir you are best lecturer

  • @asdasd-ek7nn
    @asdasd-ek7nn 6 лет назад +1

    Thank you! You explained it very well.

  • @saransappa603
    @saransappa603 5 лет назад +1

    Thanks a lot! Wonderful explanation.

  • @JessicaO_BiNdi
    @JessicaO_BiNdi 3 года назад +1

    Thanks so much! I finally understand it

  • @TeanJodibo
    @TeanJodibo 3 года назад

    Great explanation, thank you so much

  • @ChandraSekhar-tr7sf
    @ChandraSekhar-tr7sf 3 года назад

    simple and smart teaching

  • @Damonlia
    @Damonlia 4 года назад

    Thank you so much! Explenation was great!!

  • @AsiveChowdhury
    @AsiveChowdhury 7 лет назад +1

    Well Explained & Thanks a lot !

  • @aleksandrkerensky4079
    @aleksandrkerensky4079 4 года назад +6

    Interestingly, adding any one additional bridge makes the Königsberg problem soluble.

  • @yvsjayanth31
    @yvsjayanth31 Год назад

    I loved it!!

  • @daraxxi757
    @daraxxi757 Год назад

    how to figure out odd degree? Please response

  • @vasanth.s1658
    @vasanth.s1658 6 лет назад

    at 6:42 if we start with vertex a, will we get a hamiltonian path that covers all vertices????? pleassseee replyyy

    • @vasanth.s1658
      @vasanth.s1658 6 лет назад

      @Deepak Hariharan if we start at 'a' to reach 'e', 'a' should be revisited right???? then how will there be a path???

    • @niolee6803
      @niolee6803 6 лет назад

      @Deepak Hariharan Neither is it allowed in a Hamiltonian path. There, you are allowed to only visit each vertex once as you can see in the third example

  • @richardhernandez8702
    @richardhernandez8702 4 года назад

    I love the explanation! But...are you related to the Olsen twins? ;D

  • @kristelgarcia2944
    @kristelgarcia2944 4 года назад

    Can you help us to solve my problem Euler paths and circuit?

  • @sawhenry
    @sawhenry 5 лет назад

    3:52 should be “has Euler trail but no Euler path cuz you go through every edge only one time each

    • @ma.patriciaannyabut6539
      @ma.patriciaannyabut6539 4 года назад

      take a look at its degree, it has an euler path because there are such 2 odd degrees each vertices. we have this concept that it is not actually an euler path if it exceed it into 2 above. but in this case, there are 2 odd degrees each vertices and one has 4. so we can now conclude it as euler path but no circuit.

  • @apporvaarya
    @apporvaarya 5 лет назад

    very helpful tutorial

  • @syedshamail8864
    @syedshamail8864 8 лет назад

    excellent lecture, thank u

  • @lekker2333
    @lekker2333 3 года назад

    Thanks for the vid

  • @aris.konstantinidis
    @aris.konstantinidis 4 года назад

    Thank you so much!

  • @CTheElephant
    @CTheElephant 8 лет назад

    at 7:07 the graph is a Hamiltonian. Because it uses every vertex ones. why you said no? I am confused

    • @DoctorO314
      @DoctorO314  8 лет назад +3

      The reason that one is not Hamiltonian is because to get to every vertex would require using a vertex more than once. To have a Hamiltonian path, each vertex is is used exactly once.

  • @remx11
    @remx11 2 года назад

    Thank you

  • @anabildebnath2590
    @anabildebnath2590 3 года назад

    Amazing

  • @jeromemalenfant6622
    @jeromemalenfant6622 8 лет назад +1

    Aren't you talking about the more general case of an Euler trail here? A trail is defined as a walk in which no edge is traversed more than once, but in which a vertex can appear more than once. A path is where each edge and each vertex appears at most one time. Your second example using the multigraph is an Euler trail, not an Euler path.

    • @DoctorO314
      @DoctorO314  8 лет назад

      Jerome Malenfant yes there are 'trails.' I do believe my second example is an example of an Euler path.

    • @jeromemalenfant6622
      @jeromemalenfant6622 8 лет назад

      But in tracing out the 6 edges you hit the bottom two vertices (call them a and b) twice and the top vertex (c) 3 times, so its a trail, not a path:
      a (ac)_1 c (ca)_2 a (ab) b (bc)_1 c (cb)_2 b (bc)_3 c.

  • @mariri.rianaa
    @mariri.rianaa 8 месяцев назад

    tnx!

  • @femaledeer
    @femaledeer 4 года назад

    how can a hamilton circuit vistit a vertex once and also start and end at the same vertex. If it starts and ends at the same vertex, the vertex was visited twice.

  • @namelastname7642
    @namelastname7642 6 лет назад

    Thank you 😊

  • @shekinah4431
    @shekinah4431 5 лет назад

    Thanks sir

  • @tanveerhasan2382
    @tanveerhasan2382 6 лет назад

    Thanks!

  • @patrycja_1312
    @patrycja_1312 5 лет назад

    Thanks

  • @hibahasan9627
    @hibahasan9627 5 лет назад

    thumbs up👍

  • @sniyamonaharan4735
    @sniyamonaharan4735 3 года назад

    👍

  • @HeadRecieverAtHeadOffice
    @HeadRecieverAtHeadOffice 3 года назад

    I love you

  • @stephenmufutau-adams7983
    @stephenmufutau-adams7983 4 года назад

    wish you were my math lecturer

    • @DoctorO314
      @DoctorO314  4 года назад

      You are too kind. You could come to Western Illinois University and take a class with me. 😉

  • @vitocorleone6040
    @vitocorleone6040 3 года назад

    ‘#doge

  • @shaheershahzad3871
    @shaheershahzad3871 5 лет назад

    Lun py char

  • @KapilKumar-qr8hv
    @KapilKumar-qr8hv 6 лет назад

    sir your sound is so slow and not clear

  • @ahsanakhtar4192
    @ahsanakhtar4192 3 года назад

    Such a clear explanation! And great examples! Thank you, sir!

  • @anabildebnath2590
    @anabildebnath2590 3 года назад

    Amazing