how to prove that det(adj(A))=(det(A))^n-1?

Поделиться
HTML-код
  • Опубликовано: 14 дек 2024

Комментарии • 63

  • @meliemelie9085
    @meliemelie9085 4 года назад +6

    Very clear thank you, this helped me with my final exam in linear algebra 7 years after this video was posted !

  • @mohammadobeidat4504
    @mohammadobeidat4504 9 лет назад +15

    how about when the matrix A is singular?

  • @jeannettepinzon8817
    @jeannettepinzon8817 10 лет назад +6

    My life have been saved, thank you!

  • @thewordsmithsmysterious8503
    @thewordsmithsmysterious8503 Год назад +1

    Nice explanations ❣️

  • @biancabadescu1161
    @biancabadescu1161 Год назад

    finally someone capable of explaining how do you transform det(detA*I) in det(a)n thank you man my bro

  • @rakabadi
    @rakabadi 6 лет назад +3

    The best explanation online.
    thank you!

  • @seewhatseeabc
    @seewhatseeabc 9 лет назад +26

    holyshit

  • @kaneki3614
    @kaneki3614 2 года назад

    Bro ur video helped me even after 8 years ❤️

  • @wengjunfoong815
    @wengjunfoong815 Год назад

    thanks a lotsss, you help me gain a different insight in matrix!!!!

  • @MyJosef10
    @MyJosef10 11 лет назад +3

    This is great and really helped me figure out a problem, thanks! Very clearly done!

  • @mohammedhajomar4400
    @mohammedhajomar4400 2 года назад

    Thank you bro I used this proof for my linear alg quiz, it was so helpful. continue

  • @Esmegmor
    @Esmegmor 8 лет назад +1

    A very clear explanation, thanks!

  • @KurtAhmetErek
    @KurtAhmetErek 5 лет назад +1

    Its very good. Thanks

  • @hascuhas
    @hascuhas 5 лет назад +1

    Great explination, thank you!

  • @hihello-sk5ql
    @hihello-sk5ql Год назад

    Is this only for square matrixes

  • @wafateach3910
    @wafateach3910 2 года назад

    This is very helpful. Thank you 👍

  • @Neroner94
    @Neroner94 11 лет назад +1

    Thanks man!! Very good explanation!

  • @zamalambulazyma6270
    @zamalambulazyma6270 6 лет назад

    Wow simply and straight Thanx

  • @jerrerock
    @jerrerock 8 лет назад +1

    thx mate can i contact you somewhere for questions?

  • @cylau5171
    @cylau5171 10 лет назад +1

    Thanks man. You are great!!

  • @diaryck2302
    @diaryck2302 4 года назад

    I have to say thank you so much very very so so so so much I make me understand a lot because the book that I read now is not explain how it’s come and you make me understand, thank you. Ps I from Thailand.🙏🏻

  • @muu0906
    @muu0906 4 года назад

    Thank U so much for have been made this video!

  • @mjparker5
    @mjparker5 11 лет назад +1

    This was so helpful! thanks!

  • @MrTonyMaroni
    @MrTonyMaroni 10 лет назад +1

    So helpful! Thanks!

  • @thuanh1153
    @thuanh1153 Год назад

    Can u prove that |detA| = 1 with A invertible?

  • @rabiaghaly3543
    @rabiaghaly3543 7 лет назад +1

    Thank you very much

  • @로욜라-n5v
    @로욜라-n5v 7 лет назад

    OMG It was really helpful. Thanks!

  • @nazanintabrizizadeh72
    @nazanintabrizizadeh72 6 лет назад +1

    thank you so much.

  • @daw1518
    @daw1518 9 лет назад

    You are God, thanks for share this video (Y)

  • @patrickrogers2452
    @patrickrogers2452 8 лет назад +1

    Thanks so much!

  • @BlueMarble22
    @BlueMarble22 10 лет назад +1

    Thank you.

  • @beatrice5108
    @beatrice5108 6 лет назад +1

    awesome thank you lots

  • @ImranKhan-kh7jx
    @ImranKhan-kh7jx 6 лет назад +1

    thank you

  • @derdiplomat5467
    @derdiplomat5467 7 месяцев назад

    what if a isn´t invertable

  • @eminedemir8708
    @eminedemir8708 4 года назад

    thank you very much , kralsın kardeşiiim

  • @sanketgautam4015
    @sanketgautam4015 4 года назад

    Thanku if you are still reading the comments after 7 years

  • @mysterynadi
    @mysterynadi 8 лет назад +3

    a step by step explanation , thank you! deserved the 0 dislikes xD

  • @ekao9187
    @ekao9187 5 лет назад

    tx bruv

  • @snaildude268
    @snaildude268 Год назад

    Thank youu

  • @Panchoyz
    @Panchoyz 6 лет назад

    muy bueno gracias

  • @lucasbergaminipeterkrause7052
    @lucasbergaminipeterkrause7052 Год назад

    Obrigado

  • @mxngxrx
    @mxngxrx 4 года назад

    Thanks!!!!!

  • @OCEVNMusic
    @OCEVNMusic Год назад

    thanks

  • @julialocamuz7164
    @julialocamuz7164 4 года назад

    thanks!!!

  • @yuvaliko
    @yuvaliko 7 лет назад +1

    amazing! thanks

  • @artority
    @artority 7 лет назад

    How about this case ; detA is 0

    • @MuffinsAPlenty
      @MuffinsAPlenty 7 лет назад +1

      A·adj(A) = adj(A)·A = det(A)·I is a true statement _regardless_ of what det(A) is. So you can still use this fact for the case that det(A) = 0.
      Suppose det(A) = 0. This has two subcases.
      If A is not the 0 matrix, then adj(A)·A = det(A)·I = 0·I = 0. Since adj(A) multiplies a nonzero matrix to 0, then adj(A) is _not_ invertible. Hence, det(adj(A)) = 0.
      If A is the 0 matrix, then it's easy to see using the definition of adj(A) that adj(A) is the 0 matrix too. So of course, det(adj(A)) = 0 in this case.
      And of course, 0 = 0^(n-1) (when n is at least 2).

  • @jayaseelana4663
    @jayaseelana4663 8 лет назад +1

    det(adj(adj(a)))=(det(a))^(n-1)^2 can U pls prove this..

    • @MuffinsAPlenty
      @MuffinsAPlenty 7 лет назад +1

      Let B = adj(A).
      det(adj(B)) = det(B)^(n-1) (by the proof shown in this video).
      det(B) = det(adj(A)) = det(A)^(n-1)
      Substitute into the previous line
      det(adj(B)) = (det(A)^(n-1))^(n-1) = det(A)^((n-1)(n-1)) = det(A)^((n-1)^2)

  • @ahmarajeel
    @ahmarajeel 9 лет назад

    thanks man!

  • @nightmare_9.11
    @nightmare_9.11 Год назад

    Bro are you still Here

  • @vipingupta1192
    @vipingupta1192 7 лет назад +1

    If det(A)=0 then

    • @MuffinsAPlenty
      @MuffinsAPlenty 7 лет назад +2

      A·adj(A) = adj(A)·A = det(A)·I is a true statement _regardless_ of what det(A) is. So you can still use this fact for the case that det(A) = 0.
      Suppose det(A) = 0. This has two subcases.
      If A is not the 0 matrix, then adj(A)·A = det(A)·I = 0·I = 0. Since adj(A) multiplies a nonzero matrix to 0, then adj(A) is _not_ invertible. Hence, det(adj(A)) = 0.
      If A is the 0 matrix, then it's easy to see using the definition of adj(A) that adj(A) is the 0 matrix too. So of course, det(adj(A)) = 0 in this case.
      And of course, 0 = 0^(n-1) (when n is at least 2).

  • @DANIELMARTINEZ-ov5ml
    @DANIELMARTINEZ-ov5ml 4 года назад

    Thank

  • @bunkailai9685
    @bunkailai9685 7 лет назад

    牛B

  • @rogsang9764
    @rogsang9764 4 года назад

    ahahaha i love you

  • @nightmare_9.11
    @nightmare_9.11 Год назад

    Bro 9 year back

  • @josecarlosgarciaortiz4881
    @josecarlosgarciaortiz4881 6 лет назад

    spanish please!

  • @两根发菜
    @两根发菜 6 лет назад

    thank you

  • @nachogamer4212
    @nachogamer4212 2 года назад

    Thank you

  • @tuananhnguyenvuong2245
    @tuananhnguyenvuong2245 Год назад

    thank you