Derivation : How to find the length of a median of a triangle

Поделиться
HTML-код
  • Опубликовано: 26 дек 2024

Комментарии • 5

  • @rkk-ho3pe
    @rkk-ho3pe Год назад

    Hi, Can you let me know which whiteboard app do you use for teaching ? Also, is it available on windows ?

  • @murdock5537
    @murdock5537 Год назад

    Nice! ∆ ABC → BC = a = a/2 + a/2 = BD + CD; AB = c; AC = b; AD = m/2 = ?
    AE = 2AD = AD + ED = m → AC = BE↔AB = CE →
    m^2 + a^2 = 2(b^2 + c^2 ) → m/2 = (1/2)√(2(b^2 + c^2 ) - a^2)

  • @vijayanmaster-x3r
    @vijayanmaster-x3r Год назад

    Nice

  • @giuseppemalaguti435
    @giuseppemalaguti435 Год назад

    Angoli A,B,C,opposite fron a,b,c...m=(bsinC/2sinB)√(1+(b/c)^2+2bcosA/c)...gli angoli A,B,C si possono calcolare con Briggs

  • @tontonbeber4555
    @tontonbeber4555 Год назад +1

    I still hate geometry so ...
    OK lets def coord ...
    B(-a/2,0)
    C(a/2,0)
    A(x,y)
    dist AB : (x+a/2)²+y²=c² (I)
    dist AC : (x-a/2)²+y²=b² (II)
    (I)-(II) : 2ax = c²-b²
    x = (c²-b²)/2a
    m²=x²+y²
    (I) : x²+ax+a²/4+y²=c²
    m²= c²-a²/4 -ax = c² -a²/4 -c²/2 +b²/2 = (1/4) (2b²+2c²-a²)
    answer = (1/2) sqrt (2b²+2c²-a²)