Polynomial Regression in python in Hindi Detail Explanation | Machine Learning Algorithm Tutorial

Поделиться
HTML-код
  • Опубликовано: 2 янв 2025

Комментарии •

  • @devansheerupabheda9534
    @devansheerupabheda9534 4 года назад +1

    Amazing sir, one of d bestest channel to learn ML in RUclips

  • @9017276611
    @9017276611 4 года назад +7

    You guys are really amazing, very soon your channel will get millions of like and subscribe for sure... :)
    Just one thing to say that, put direct link of your suggested video instead of complete series.,
    for ex., in your videos if u r suggesting any particular topic video to watch then put link directly to that specific video instead of giving link for entire series where that video has uploaded...
    thanks ... keep it up, going great...

  • @sachinkumarvarshney9111
    @sachinkumarvarshney9111 3 года назад +1

    you explain everything perfectly sir .........Great job.....

  • @mitulgajera9898
    @mitulgajera9898 4 года назад +1

    Very good playlist for ML

  • @Lejhand10
    @Lejhand10 4 года назад +1

    Great Work, Great Video !!

  • @abhijeet2153
    @abhijeet2153 4 года назад +1

    great work, keep doing work bro
    u r boon for people like us, plzz come with more projects

  • @saurabhbarasiya4721
    @saurabhbarasiya4721 4 года назад +1

    Great video sir
    You are best

  • @abdulqadar9580
    @abdulqadar9580 2 года назад +1

    Best teaching Sir

  • @sneharane2596
    @sneharane2596 4 года назад +1

    You explain really well !

  • @satgurumaurya3107
    @satgurumaurya3107 3 года назад +1

    Very nice tutorial

  • @shachisinghal8856
    @shachisinghal8856 6 месяцев назад +1

    Superrrrbbb💯

  • @yogeshrawat1204
    @yogeshrawat1204 4 года назад +1

    Your teaching level is very good.... Till now I didn't have any doubt but here is one doubt ....what is the difference between fit and transform method in polynomial features

  • @umairsaleem4345
    @umairsaleem4345 4 года назад +1

    Very good sir

  • @jarvis4513
    @jarvis4513 4 года назад +1

    Thank you sir 🙏🏼❣️

  • @tauseefnawaz8888
    @tauseefnawaz8888 4 года назад +1

    thanks for great help sir. But i want to ask a question, you have applied this polynomial transformation on all the features without visualizing. So, Can we apply this polynomial regression on some features and linear regression on some features after visualize the whole data? is this possible, or will get best accuracy? Waiting for your response. Thanks

  • @Manas_Raj_555
    @Manas_Raj_555 3 года назад +1

    ace tutorial

  • @inamkhan-qe3oe
    @inamkhan-qe3oe 4 года назад +1

    thnks alot

  • @suyogpatil8613
    @suyogpatil8613 3 года назад +2

    sir pura aapki tarah hi notebook kiya hai par
    but mse and rmse value alag aa rahi hai kyu ???
    mse rmse
    52 7
    8 2

  • @bhaveshmevada8424
    @bhaveshmevada8424 4 года назад +1

    wahh maja aa gya

  • @devansheerupabheda9534
    @devansheerupabheda9534 4 года назад +1

    Where is next part of this video...plz share link

  • @abhishekdubey2328
    @abhishekdubey2328 3 года назад

    How did we visualize it.

  • @alfazbaig956
    @alfazbaig956 3 года назад +1

    bro you missed Logistic regression in your tutorial series, please cover that topic too

  • @vishalgupta3175
    @vishalgupta3175 4 года назад +1

    Hi Please do one complete project starting from web scrapping, data cleansing and model building and deployment from Kaggle.

    • @IndianAIProduction
      @IndianAIProduction  4 года назад

      Please go through channel there you will get end to end projects

  • @rubayetalam8759
    @rubayetalam8759 3 года назад +1

    where can I get the datasets?

  • @sandeepbabal171
    @sandeepbabal171 4 года назад

    Sir , please share market ki report automatic download kese kare

  • @suryaeaty7748
    @suryaeaty7748 4 года назад +1

    sir dont we have curse of dimensionality here because of too many features , also tell me how to check overfitting /underfiting ?

  • @JustFeelLyrics
    @JustFeelLyrics 3 года назад +1

    15:05
    SIr, I got an error: When I train our polynomial regression :(
    ValueError Traceback (most recent call last)
    in ()
    1 lr = LinearRegression()
    2
    ----> 3 lr.fit(X_train_poly, y_train, sample_weight=None)
    2 frames
    /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
    547 "Reshape your data either using array.reshape(-1, 1) if "
    548 "your data has a single feature or array.reshape(1, -1) "
    --> 549 "if it contains a single sample.".format(array))
    550 # If input is 1D raise error
    551 if array.ndim == 1:
    ValueError: Expected 2D array, got scalar array instead:
    array=PolynomialFeatures(degree=2, include_bias=True, interaction_only=False,
    order='C').
    Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.

    • @GAURAVSINGH-oq2yu
      @GAURAVSINGH-oq2yu 2 года назад

      same error if you find any soln of this then please tell me

  • @minakshisonawane5929
    @minakshisonawane5929 2 года назад +2

    sir.images pe kaise kaam.karega please image related video send kro na sir please

  • @madhuriverma8389
    @madhuriverma8389 3 года назад

    I think he had trained model on complete data, ie including test data also. Otherwise simply you can't get such accuracy

  • @navdeepkaur6855
    @navdeepkaur6855 3 года назад

    How can we know number of hidden layers used in this model and number of neuron?

  • @samiksharathore3186
    @samiksharathore3186 3 года назад +1

    I got 100% accuracy

  • @sahilkadam9950
    @sahilkadam9950 2 года назад

    MSE our RMSC 0. ke pass hoga tab best hoga na ye tho error jyada bata raha hai

    • @h44r96
      @h44r96 Год назад

      0 ke paas hua toh worse model hota hai

  • @anupamgupta1286
    @anupamgupta1286 3 года назад +1

    In the case of overfiting, we always get very low training error and very high test error. We can not get 100% accuracy in the case of overfiting.

  • @Selfmotivator3003
    @Selfmotivator3003 3 года назад

    sir how to convert range value into single mean value of both????
    ex. 1120-1160 into 1140
    i need to change the whole column

    • @h44r96
      @h44r96 Год назад

      Yes mean value of the both or even column too

  • @jaysoni7812
    @jaysoni7812 4 года назад

    X_train ke liye ham polynomial ko fit karne ke baad transform karte hai vo samaj aaya, lekin ham X_test ko kyu transform karte hai? usko to hamne fit bhi nahi kiya hai fir bhi....

  • @ShubhamKumar-lt1ek
    @ShubhamKumar-lt1ek 4 года назад

    sir data set available nahi ha

  • @vikassagar4453
    @vikassagar4453 4 года назад +1

    Sir Mera mse = 14.026379 and rmse = 3.74518077 ahara h toh apka jaisa same answer nhi ahaya h

    • @h44r96
      @h44r96 Год назад

      Alag alag data points use hue hai aap dono ke training testing sets mein isliyeq

  • @babykumari2753
    @babykumari2753 4 года назад

    Nice sir😂😂😂😂

    • @babykumari2753
      @babykumari2753 4 года назад +1

      Please sir upload a video in datapolynomials linear regression used this data how to convert category data to numerical ...

    • @IndianAIProduction
      @IndianAIProduction  4 года назад

      Please watch data preprocessing tutorial link in description box

  • @minakshi_119
    @minakshi_119 3 года назад +1

    Sir Unsupervised and Reinforcement Learning ke videos ke link please.

  • @NehaYadav-hs1po
    @NehaYadav-hs1po 3 года назад

    hello sir ,I got R^2 value=0 .9086932170235822. what does that mean? is it good or bad

    • @h44r96
      @h44r96 Год назад

      Good model

  • @arpitbapna
    @arpitbapna 4 года назад +3

    Bhai phele aache se review kar liya kar apne content yaar ! Kitna galat batata hai logo ko ! In polynomial regression jaha pe tu explain kar raha hai Polynomial Regression ki equation ussme Y = Beta(0) + Beta(1)*X(1)^1 + Beta(2)*X(2)^2 + ... + Beta(n)* X(n)^(power degree =1,2,3,...) Bhai puri equation hi galat baata raha learners ko matlab haad hai yaar atleast phele khud sheekh lo aache then kisi aur ko sheekhao aache se !

    • @arpitbapna
      @arpitbapna 4 года назад

      And Khudh ne bola hai ki agar ek hi feature ho toh woh Simple linear regression hoga and then khhud hi galat baata raha hai in Polynomial regression me ussme tune ek hi feature liya hai sirf X1 ! 🙄🙄🙄 Bhai peeke baanate ho kya videos ?

    • @IndianAIProduction
      @IndianAIProduction  4 года назад +1

      Thank you for watching this video but Arpit I have explained this formula for nth degree for x1 feature Y = Beta(0) + Beta(1)*X(1)^1 + Beta(2)*X(1)^2 + ... + Beta(n)* X(1)^(n) not this Y = Beta(0) + Beta(1)*X(1)^1 + Beta(2)*X(2)^2 + ... + Beta(n)* X(n)^(power degree =1,2,3,...)
      Once again thanks for sharing your feedback keep learning.

    • @sneharane2596
      @sneharane2596 4 года назад

      @@IndianAIProduction keep going !

  • @goldylodhi5145
    @goldylodhi5145 Год назад