SA54: Analysis of Three-Hinged Arches

Поделиться
HTML-код
  • Опубликовано: 5 ноя 2024

Комментарии • 54

  • @Harry-mc5nl
    @Harry-mc5nl 2 года назад +3

    Unpopular opinion: The good thing about this channel is that we can also get the pdf version of notes. Thank you soo much Dr. Structure.

  • @CricketIsOn
    @CricketIsOn 6 лет назад +9

    Amazing work. Its quite easy to understand when someone explains with this depth. Keep updating us !!!

  • @maneessha7603
    @maneessha7603 3 года назад +3

    Man i was searching for mobile tutor and it is here.... really good👌👌🥰

  • @bishwasingh2090
    @bishwasingh2090 3 года назад +3

    Thanks for clarifying the concept.

  • @vishalmahar9166
    @vishalmahar9166 5 лет назад +6

    sir
    your lectures are so amazing and so knowledgable and in depth that i love the most these are the best.
    i request you to please make lectures on Design of Reinforced Concrete Structures
    thanks

  • @tauhawani4294
    @tauhawani4294 4 года назад +2

    Your work is fantastic, in-depth and helpful for students . Thanks for that . Could you please make videos on 2 hinged arches of ist order and 3rd order indeterminacy

  • @md.alvisarkaralvi7977
    @md.alvisarkaralvi7977 4 года назад +1

    Awesome and incredible channel. All can easily understand about structure related math. Hope you make more and full vedio about structure. Best wishes for your success

    • @DrStructure
      @DrStructure  4 года назад

      Thank you for your feedback.

  • @rakeshkumar-zj3uo
    @rakeshkumar-zj3uo 4 года назад +1

    Amazing work

  • @marcusaurelius8047
    @marcusaurelius8047 6 лет назад +3

    Concise and clear, thanks.

  • @rabin5903
    @rabin5903 5 лет назад +1

    Your all lectures is so amazing to realize. For all sfd and bmd of three hinged arch is same as curve even for single point load or triangular load??Thanks.

    • @DrStructure
      @DrStructure  5 лет назад +1

      Different loads result in different arch free-body diagrams, therefore, the force equations (and their graphs) would be different than the example given in the lecture.

    • @rabin5903
      @rabin5903 5 лет назад

      Dr. Structure thanks for the reply

    • @DrStructure
      @DrStructure  5 лет назад +1

      You're welcome!

  • @rahulnkt0828
    @rahulnkt0828 6 лет назад +1

    Dr. Structure, First of all i appreciate ur work. I want some videos on the " How to draw influence line diagram in INDETERMINATE structure for reaction, shear and moment".

  • @abhishek0o7
    @abhishek0o7 5 лет назад +2

    *God of structure*

  • @laxmibhalla3085
    @laxmibhalla3085 5 лет назад +2

    Fabulous 🎁

  • @huseinfaisal3402
    @huseinfaisal3402 4 года назад

    Very very helpfull,I want to know what the concept and pylosophy the 3 hinged arch,what the reason we suppose hing in midspan?

    • @DrStructure
      @DrStructure  4 года назад +1

      Each type of arch has its advantages and disadvantages. For example, a 3-hinged arch is not as rigid as the other types of arches. Consequently, it is less sensitive to support settlement. That is, while a hinge-less (more rigid) arch would undergo additional stresses, if a support settles due to, say, weak soil, the ability of the hinges in a 3-hinged arch to rotate would prevent the development of those additional stresses in the two arch legs.

  • @zekkh6201
    @zekkh6201 5 лет назад

    from jordan ,thank you
    great channel and great videos❤

  • @Eng.Islam_Mohamed
    @Eng.Islam_Mohamed 6 лет назад +1

    It very amazing work.thank you a lot
    I'm a teaching assistant and I want to make some lectures for my student by the same way ,but I don't know how?,so I hope you help me .
    How I do it or what're the softwares which can help me too. .

    • @Eng.Islam_Mohamed
      @Eng.Islam_Mohamed 6 лет назад

      This is my email:
      islam.engineer91@gmail.com

    • @DrStructure
      @DrStructure  6 лет назад

      Thanks for the note. We use several software tools for creating the lectures. The lecture notes are created/written in Adobe Illustrator, and animated using an Illustrator script. Additional animation, when needed, is done using Adobe Animate. Character animation is done using Iclone. Then the entire video is put together and video and audio is synchronized using Camtasia Studio.

  • @mentor_25
    @mentor_25 6 лет назад

    Thank you Dr. Structure 🤗😍

  • @edwardkis6595
    @edwardkis6595 Год назад

    I am confused with the way you obtain the N and V In terms of H ,R, Sine and cosine

    • @DrStructure
      @DrStructure  Год назад

      If we label the axes along H and R as x and y, and label the axes along N and V as x’ and y’, then we can see that H has a component along x’ and y’.
      And, R has a component along x’ and y’.
      Note that the x’-y’ coordinate system is obtained by rotating the x-y system counterclockwise by angle theta.
      The component of H along x’ is H cos theta. The component of H along y’ is -H sin theta.
      The component of R along x’ is R sine theta. And the y’ component of R is R cos theta.
      Then the total force (due to H and R) along x’ is H cos theta + R sin theta. And the total force along y’ is R cos theta - H sine theta.

  • @malikumerfarooq5414
    @malikumerfarooq5414 4 года назад +1

    Thanks sir

  • @ankuskumar5016
    @ankuskumar5016 6 лет назад

    Will you please upload two hinged arch.

  • @aaronabela6904
    @aaronabela6904 3 года назад

    For a flat arch does the same method applies? as thrust would be extremely high. Thanks

    • @DrStructure
      @DrStructure  3 года назад

      No, a flat arch (arch at the bottom, flat on the top) has a variable cross-section which would result in a change in the distributed load pattern and the geometric properties of the system. These changes are not consistent with the assumptions used for analyzing regular (circular or parabolic) arches with a constant cross-section.

  • @taqitavassoli1374
    @taqitavassoli1374 6 лет назад +1

    thank you ….

  • @shaikasif9954
    @shaikasif9954 4 года назад

    can you explain me..why thrust daigram is parabolic where as shear daigram is linear??

    • @DrStructure
      @DrStructure  4 года назад

      The shear diagram, when drawn, looks linear, but it is not actually a linear function. The function is given @9:48.

    • @shaikasif9954
      @shaikasif9954 4 года назад

      @@DrStructure I want complete information about 3 hinged arches ..pls suggest you tube channel or website or a text book ..plss!!

    • @DrStructure
      @DrStructure  4 года назад +1

      There are not that many textbooks written exclusively on arches. I can suggest Theory of Arched Structures by Igor Karnovsky. But I am not certain that is what you are looking for. You can find the table of contents of the book and some of its pages on Amazon. Take a look and see if that suits you. You may also be able to find some older textbooks on the subject.
      As for youtube or website, I am not aware of any that covers the topic in a comprehensive way. It seems you are looking for a substantive online course on the topic. As far as I can tell, none exist. If you come across one, let us know.

  • @muhammadikhsan5252
    @muhammadikhsan5252 6 лет назад +4

    waiting for fem

  • @nitinpathak306
    @nitinpathak306 6 лет назад +1

    Nice 1

  • @adiwinataigede5896
    @adiwinataigede5896 10 месяцев назад

    Can you explain how to get the result 1875-150x=0

    • @DrStructure
      @DrStructure  10 месяцев назад

      That is the simplified expression for dN/dx = 0. Are you getting a different value for the expression?

    • @adiwinataigede5896
      @adiwinataigede5896 10 месяцев назад

      Oh okay ​@@DrStructure, maybe I still don't understand, but if you don't mind, can you share the long method to find dN/dx=0

    • @DrStructure
      @DrStructure  10 месяцев назад

      You can use wolfram alpha (www.wolframalpha.com) to perform the integration.
      In the input field type:
      Derivative of (198-1.92*x)/sqrt(1+(0.8-0.032*x)^2
      Then click on the equal sign on the right side of the input field.
      Set the resulting equation equal zero and simplify the expression. You should get: 1875 - 150 x.

  • @vikymehra5902
    @vikymehra5902 6 лет назад

    I want some information and latest issues related to light weight concrete. Plzzz help me out

    • @DrStructure
      @DrStructure  6 лет назад

      There are a few online resources that could provide the information you are looking for, or guide your in the right direction. Here is one: www.concretecentre.com/

    • @vikymehra5902
      @vikymehra5902 6 лет назад

      Dr. Structure thank you sir plzzzz suggest me 2 more sites so that I can work on my project.

  • @xoxoxo.123
    @xoxoxo.123 11 месяцев назад

    how to get 62.5?

    • @DrStructure
      @DrStructure  11 месяцев назад

      The equation for f(x) is (4 h x/ L^2)(L - x). When L = 50 and h = 10, the equation simplified to (50 x - x^2)/62.5

  • @stanzinnorboo7083
    @stanzinnorboo7083 4 года назад

    At 6:23 how N and V have derived.

    • @DrStructure
      @DrStructure  4 года назад +1

      H has a component along the N-axis and a component along the V-axis. Since H is a horizontal force that makes angle theta with the N-axis, its projection onto the axis is: H cos(theta). H also has a projection along the V-axis, it is H sin(theta). This projection force, however, is going to be in the direction opposite to what is shown on the diagram for the V-axis. The arrow for the axis is pointing downward, meaning we are assuming downward to be positive alone the V-axis. Since the projection of H onto the V-axis is going to be upward, we attach a negative sign to it. That is, we write the projection of H onto the V-axis as -H sin(theta).
      The vertical force R also has a projection along the N and V axes. R makes angle theta with the V-axis. Therefore, its component along the V-axis is: R cos(theta), and the projection of R onto N-axis is R sin(theta). Note that these projections are acting in the positive directions of the N and V axis, hence no negative sign needs to be used to label either of these components.
      Since H and R each has a component along the N and V axes, the total force along N and V is the sum of the two components. For N we get H cos(theta) + R sin(theta). For V, we get -H sin(theta) + R cos(theta).

    • @stanzinnorboo7083
      @stanzinnorboo7083 4 года назад

      Thank you dr Structure, you are an amazing teacher.

    • @DrStructure
      @DrStructure  4 года назад +1

      @@stanzinnorboo7083 You're welcome, and thank you!

    • @stanzinnorboo7083
      @stanzinnorboo7083 4 года назад

      Sorry for again disturbing you, i want to ask , will you please make a video on two hinge arch and arch with different support level?😀

    • @DrStructure
      @DrStructure  4 года назад +1

      @@stanzinnorboo7083 Eventually we will cover those topics, the when of it however is not known at this point.

  • @naiharrison4998
    @naiharrison4998 5 лет назад +1