Предлагаю свою версию обьяснения, как я понимаю эту тему: Произвольные повороты тела - это поворот на некий угол вокруг какой-то оси. P.s. На самом деле обьяснение можно было сократить до 5 предложений, но я специально всё пояснял и приводил примеры Ось мы можем закодировать точкой на сфере (через нее и начало координат надо провести прямую - она и будет осью). Точку на сфере мы можем закодировать двумя числами - смещением вдоль экватора и меридиана (линия, соединяющая на шаре Северный и Южный полюса). Каждой паре чисел можно сопоставить комплексное число (паре [a1, b1] можно сопоставить однозначно число a1 + i*b1). Получается, что каждой оси можно сопоставить комплексное число (то есть мы выбираем комплексное число a1+i*b1 - выделяем из него пару [a1, b1] и проводим прямую через начало координат и эту точку). Угол поворота вокруг оси мы можем закодировать комплексным числом, так же как мы это делали с плоскостью (если не веришь, то можно сделать разрез сферы плоскостью, перпендикулярной оси вращения. Мы получим окружность на этой плоскости, которая тоже будет поворачиваться на угол вращения альфа). Получается, вращение тела мы можем закодировать парой комплексных чисел - одно отвечает за угол поворота, а второе за ось вращения. А кватернион - это и есть такая пара: q = (a + bi) + (c + di)j = a + bi + cj + dk, где k=ij). Мы добавляем j перед вторым числом, чтобы 2 комплексных числа не склеились в одно (a + c) + (b+d)i. Т.е. мы конструируем одно число, которое состоит из двух - и чтобы они не склеивались в одно, мы добавляем j перед вторым числом.
Кажись начинаю вдуплять что такое сие чудо, это какой урок я смотрю про кватернионы? 10?15? смотрю и не вдупляю что за чудо происходит, но вот понятие группы помогает не порвать мое сознание, ближе к программированию и алгоритмизации. Будет забавно если окажется что кватернионы это запись динамической оси с углом поворота W где sqrt(X^2+Y^2+Z^2)=1
Гамильтон не "напился с горя". Он возвращался из родного университета с какого-то университетского междусобойчика поздно вечером (виски имело место на междусобойчике) , и таки да - был, как следствие, несколько под градусом. И тут таки да - по дороге он понял, как устроены кватернионы. Путь домой лежал через мост, и на его деревянных перилах он вырезал основную формулу перочинным ножом. Говорят, эта формула прожила долгие годы. Но по словам Арнольда, будучи на том мосту, он искал на перилах эту формулу, но не нашёл. По-видимому мост всё таки подвергался ремонту.
При все уважении к аатору и Єйлеру назанное равенство не есть тождество. Наверное нужно бьіло сказать что при очень точному рассмотрения есть маленької розходження, которое не позволяет легко вьічислить число π до Гигадесятичного знака. После примерно тридцяти точньіх цифр идут сбои ,а потом ошибочньіе.
@@yahton309 целенаправленно не искал. По работе постоянно поменяю вращения Ия, когда в кватернионах, когда в матрицах, и волей не волей задаёшься таким вопросом.
Честно не очень понятно,намного лучше бы было все таки начинать с тензорной алгебры и квадратичных форм,потому как нужно понимать суть математики а не формулы
Все предельно ясно, как уже многие здесь заметили... А нельзя ли еще по запутанней?... :) Какие-нибудь матрицы с количеством измерений больше 3 сюда добавить... Или сфериндр и кубиндр (фигуры в 4D). :) К стати, для вращения в 4D нужно не 3 параметра (как по Эйлеру), а аж целых 6. Вот еще одна подходящая тема для еще одной мозгодробилки :) Только так как я описал она не получится. Нужно как с кватернионами, добавить еще кучу всяких абракадабр. И тогда взрыв мозга точно будет обеспечен. :) Кстати, кто мне подскажет, что используется вместо кватерниона для вращения фигур в 4D? :)
Кватернионы широко используются во всех комп играх. А дальше идут октонионы, или октавы потом сенедрионы. И дальше числа с 32 мерностями и с 64. Но только сейчас к октавам только подходят ученые. Пока нигде не применяются. Но очень интересно. Это и есть Эволюция человека, если его рассматривать как точку - от ноль-мерности до 64-мерного.
@@critical-ren-fan-corner Ну смотря что хочешь делать. Кватернионы отвечают только за вращение(действуют скорее на векторное пространство, если грубо говорить). Если в аффинном пространстве то да матрица нужна (N+1)x(N+1). Обычно кватернионы в компьютерной графики используют для скелетной анимации, так просто меньше памяти потребляется ну и чуть меньше операций сложения и умножения
Пришел узнать что такое кватенионы, в итоге получил кучу непонятной инфы. ТО есть услышал что и везде, а как использовать не понятно. (нужно для программирования). Пойду смотреть видос для чайников.
в смысле как использовать не понятно? берешь и пишешь игру, на том же юнити стандартные повороты по разным осям, вот тебе и практика и все ясно комплексные числа много где применяются, но в программировании они не раскрывают всех своих деталей, там в основном их принцип основан на ротации
@@melitopol_Russia ну просто повороты по осям каждый может, а мудрость понять нет. Как видимо и доходчиво объяснить. Все понимаю, сложная тема, так что не сочтите за быкование. А проблему свою как-то решил, была готовая функция в общем.
Единственное, чем математика отталкивает людей, так это диким количеством терминов, при чем, все они калька с иностранных языков. Нить рассуждений теряется, как только процент терминов зашкаливает. Плюс введение новой системы записи. На мой взгляд дилетанта, если бы удалось упростить терминалогию, то значительно больше людей окунулось бы в математику. А так, чем дальше иду по списку, тем сложнее удерживать нить рассуждения, хотя говорится о вещах простых (относительно), да и вышку я изучал лет 30 назад в институте.
За каждым конкретным термином стоит теоретическая выкладка. Если бы в математике не вводилась терминология, все математические изыскания были бы сродни томикам Толстого, а англоязычные они лишь потому, что их открыли не в России. Поэтому простому "дилетанту" достаточно всего лишь по одному термину найти всю нужную информацию, а не читать огромные сочинения на тему:"как я доказывал эту теорему".
А ас не смущает то, что везде присутствует куча терминов, строительство, экономика, физика. Есть люди, которые неспособны мыслить, им математика не даётся.
Хорошо так Гамильтона торкнуло!
Предлагаю свою версию обьяснения, как я понимаю эту тему:
Произвольные повороты тела - это поворот на некий угол вокруг какой-то оси.
P.s. На самом деле обьяснение можно было сократить до 5 предложений, но я специально всё пояснял и приводил примеры
Ось мы можем закодировать точкой на сфере (через нее и начало координат надо провести прямую - она и будет осью). Точку на сфере мы можем закодировать двумя числами - смещением вдоль экватора и меридиана (линия, соединяющая на шаре Северный и Южный полюса). Каждой паре чисел можно сопоставить комплексное число (паре [a1, b1] можно сопоставить однозначно число a1 + i*b1). Получается, что каждой оси можно сопоставить комплексное число (то есть мы выбираем комплексное число a1+i*b1 - выделяем из него пару [a1, b1] и проводим прямую через начало координат и эту точку).
Угол поворота вокруг оси мы можем закодировать комплексным числом, так же как мы это делали с плоскостью (если не веришь, то можно сделать разрез сферы плоскостью, перпендикулярной оси вращения. Мы получим окружность на этой плоскости, которая тоже будет поворачиваться на угол вращения альфа).
Получается, вращение тела мы можем закодировать парой комплексных чисел - одно отвечает за угол поворота, а второе за ось вращения. А кватернион - это и есть такая пара: q = (a + bi) + (c + di)j = a + bi + cj + dk, где k=ij). Мы добавляем j перед вторым числом, чтобы 2 комплексных числа не склеились в одно (a + c) + (b+d)i. Т.е. мы конструируем одно число, которое состоит из двух - и чтобы они не склеивались в одно, мы добавляем j перед вторым числом.
Кажись начинаю вдуплять что такое сие чудо, это какой урок я смотрю про кватернионы? 10?15? смотрю и не вдупляю что за чудо происходит, но вот понятие группы помогает не порвать мое сознание, ближе к программированию и алгоритмизации. Будет забавно если окажется что кватернионы это запись динамической оси с углом поворота W где sqrt(X^2+Y^2+Z^2)=1
Прикольно, сам Доктор Хаус объясняет нам кватернионы :)
Вообще-то оригинальная надпись вроде бы не сохранилась, но табличка на мосту таки есть...
Гамильтон не "напился с горя". Он возвращался из родного университета с какого-то университетского междусобойчика поздно вечером (виски имело место на междусобойчике) , и таки да - был, как следствие, несколько под градусом. И тут таки да - по дороге он понял, как устроены кватернионы. Путь домой лежал через мост, и на его деревянных перилах он вырезал основную формулу перочинным ножом. Говорят, эта формула прожила долгие годы. Но по словам Арнольда, будучи на том мосту, он искал на перилах эту формулу, но не нашёл. По-видимому мост всё таки подвергался ремонту.
в интернетах я видел даже фото памятной таблички , установленной на том мосту.
16:32 Перемножение по Минковскому - это Декартово произведение, что ли?
При все уважении к аатору и Єйлеру назанное равенство не есть тождество. Наверное нужно бьіло сказать что при очень точному рассмотрения есть маленької розходження, которое не позволяет легко вьічислить число π до Гигадесятичного знака. После примерно тридцяти точньіх цифр идут сбои ,а потом ошибочньіе.
Мой любимый учитель. В каждую школу такого бы!
Согласен
На coursera Алексей куда меньше разжевывал, как мне показалось )
2:22 - лучше поворачивать последовательно на углы Пси, Хи
Cавватеев произносит "кси", пишет пси. И несколько раз.
Он не отличает эти буквы??
"с вращением пространства" что именно вы собрались вращать?
В итоге так и не услышал ничего про кватернионы...
Может кто дать наводку, что смотреть о невозможности расширения множества комплексных чисел коммутативным способом?
нашли что-нибудь?
@@yahton309 целенаправленно не искал. По работе постоянно поменяю вращения Ия, когда в кватернионах, когда в матрицах, и волей не волей задаёшься таким вопросом.
Что может быть проще описания поворота единичной окружности? Тут такую теорию подвели что к середине я вообще не понял как это связанно с вращением.
То есть помесь групп и комплексных чисел
Оп-па. Савватан с козырей зашел :).
"последовательность поворота не важна" :) Это всёравно что сказать "какая разница как мы проживём жизнь, мы всёравно все умрём".
Он вообще сумасшедший
Ребят, а математикам дают девушки?
ахах
Те, кто учат математику, дают 🤡
Зависит от того, сколько математик зарабатывает
Честно не очень понятно,намного лучше бы было все таки начинать с тензорной алгебры и квадратичных форм,потому как нужно понимать суть математики а не формулы
Все предельно ясно, как уже многие здесь заметили... А нельзя ли еще по запутанней?... :) Какие-нибудь матрицы с количеством измерений больше 3 сюда добавить... Или сфериндр и кубиндр (фигуры в 4D). :) К стати, для вращения в 4D нужно не 3 параметра (как по Эйлеру), а аж целых 6. Вот еще одна подходящая тема для еще одной мозгодробилки :) Только так как я описал она не получится. Нужно как с кватернионами, добавить еще кучу всяких абракадабр. И тогда взрыв мозга точно будет обеспечен. :) Кстати, кто мне подскажет, что используется вместо кватерниона для вращения фигур в 4D? :)
Матрицы 3x3 хватит в 3D
Кватернионы широко используются во всех комп играх. А дальше идут октонионы, или октавы потом сенедрионы. И дальше числа с 32 мерностями и с 64. Но только сейчас к октавам только подходят ученые. Пока нигде не применяются. Но очень интересно. Это и есть Эволюция человека, если его рассматривать как точку - от ноль-мерности до 64-мерного.
@@TheSlonik55 Седенион - элемент 16-мерной алгебры над полем вещественных чисел.
Синедрион это немного другое
@@JohnWickMovie разве для преобразований n-мерного пространства не нужны n+1-мерные матрицы преобразований?
@@critical-ren-fan-corner Ну смотря что хочешь делать. Кватернионы отвечают только за вращение(действуют скорее на векторное пространство, если грубо говорить). Если в аффинном пространстве то да матрица нужна (N+1)x(N+1). Обычно кватернионы в компьютерной графики используют для скелетной анимации, так просто меньше памяти потребляется ну и чуть меньше операций сложения и умножения
а зачем это нужно, усидчивость тренировать?
Тебе - низачем не нужно. Можешь больше не терзаться этим вопросом.
@@MerkRay вопрос риторический был, так что у тебя видимо попа болит...
Поворот координат в программировании, игры, карты, десктоп, мобилки, программы на плисах и мк для приводов и датчиков вращений.
В кристаллографии используются кватернионы, а также много где используются кристаллография (физика твёрдого тела и тд).
Пришел узнать что такое кватенионы, в итоге получил кучу непонятной инфы. ТО есть услышал что и везде, а как использовать не понятно. (нужно для программирования). Пойду смотреть видос для чайников.
ох блин жиза, тоже изза этого Gimbal lock?
в смысле как использовать не понятно? берешь и пишешь игру, на том же юнити стандартные повороты по разным осям, вот тебе и практика и все ясно
комплексные числа много где применяются, но в программировании они не раскрывают всех своих деталей, там в основном их принцип основан на ротации
@@ОлексійБовсуновкий ну да, там капец ограничение, понятно зачем, а вот обойти хочется.
@@melitopol_Russia ну просто повороты по осям каждый может, а мудрость понять нет. Как видимо и доходчиво объяснить. Все понимаю, сложная тема, так что не сочтите за быкование.
А проблему свою как-то решил, была готовая функция в общем.
@@namibo разобрался с этой фигнёй? Если выйдет скинь пж нормальный источник
Единственное, чем математика отталкивает людей, так это диким количеством терминов, при чем, все они калька с иностранных языков. Нить рассуждений теряется, как только процент терминов зашкаливает. Плюс введение новой системы записи.
На мой взгляд дилетанта, если бы удалось упростить терминалогию, то значительно больше людей окунулось бы в математику. А так, чем дальше иду по списку, тем сложнее удерживать нить рассуждения, хотя говорится о вещах простых (относительно), да и вышку я изучал лет 30 назад в институте.
За каждым конкретным термином стоит теоретическая выкладка. Если бы в математике не вводилась терминология, все математические изыскания были бы сродни томикам Толстого, а англоязычные они лишь потому, что их открыли не в России. Поэтому простому "дилетанту" достаточно всего лишь по одному термину найти всю нужную информацию, а не читать огромные сочинения на тему:"как я доказывал эту теорему".
А ас не смущает то, что везде присутствует куча терминов, строительство, экономика, физика. Есть люди, которые неспособны мыслить, им математика не даётся.
во во, пиво выглядит более привлекательным на фоне матеши
Типичный пример российского преподавания.
сам то понял что объяснял?
Кому он всю эту чушь рассказывает? Судя по звуку там никого нет, пустая комната.
en.wikipedia.org/wiki/Broom_Bridge
там и фотка мемориальной таблички есть
Спасибо за интересную информацию.