an interesting integral

Поделиться
HTML-код
  • Опубликовано: 20 янв 2025

Комментарии • 6

  • @avielabc604
    @avielabc604 2 месяца назад

    Using kings rule would solve it a lot quicker 🙌

  • @emerald_eyes
    @emerald_eyes 2 месяца назад

    Just take divide numerator and denominator by 5^x. You get integral of dx/5^x(1+1/5^x)
    Then you set u=1/5^x, du=ln(1/5)/5^x. dx
    Substitute into the equation 1/ln(1/5) × integral of du/1+u. And the answer is ln(1+1/5^x)/ln(1/5)

    • @seegeeaye
      @seegeeaye  2 месяца назад

      divede 5^x is to multiply 5^-x, the same

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 2 месяца назад

    an interesting integral

  • @gelbkehlchen
    @gelbkehlchen 2 месяца назад

    Solution:
    ∫1/(5^x+1)*dx = ∫(5^x+1-5^x)/(5^x+1)*dx
    = ∫(5^x+1)/(5^x+1)*dx-∫5^x/(5^x+1)*dx
    = ∫dx-∫5^x/(5^x+1)*dx
    = x-∫e^[x*ln(5)]/{e^[x*ln(5)]+1}*dx
    = x-1/ln(5)*∫e^[x*ln(5)]/{e^[x*ln(5)]+1}*ln(5)*dx
    ---------------------
    Substitution: u = e^[x*ln(5)]+1 du = ln(5)*e^[x*ln(5)]
    ---------------------
    = x-1/ln(5)*∫1/u*du = x-1/ln(5)*ln|u|+C
    = x-1/ln(5)*ln|e^[x*ln(5)]+1|+C
    = x-1/ln(5)*ln|5^x+1|+C
    Checking the result by deriving:
    [x-1/ln(5)*ln|5^x+1|+C]’ = 1-1/ln(5)*1/(e^[x*ln(5)]+1)*e^[x*ln(5)]*ln(5)
    = 1-5^x/(5^x+1) = (5^x+1-5^x)/(5^x+1) = 1/(5^x+1) everything okay!