Math Olympiad | A Nice Rational Equation | VIJAY Maths

Поделиться
HTML-код
  • Опубликовано: 30 янв 2025

Комментарии • 13

  • @pradyumnanayak9844
    @pradyumnanayak9844 12 дней назад +1

    👍

  • @Bheeshma-l2g
    @Bheeshma-l2g 13 дней назад +1

    👍👍👍

  • @Rocio62154
    @Rocio62154 14 дней назад +2

    EXCELLENTONIO!!

  • @babupinjari5698
    @babupinjari5698 13 дней назад +1

    Excellent

  • @srinivasch-re2oq
    @srinivasch-re2oq 12 дней назад

    Very simple
    Take a common in numerator
    And find all sums by taking LCM of all denominators
    And find a,

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 12 дней назад +1

    We notice that .1/3*5
    =1/2(1/3 -1/5)
    Hence the expression in LHS
    =a/2(1/3 -1/13)=a/2(10/39)=10a/78
    Hence
    10a =7800
    a=780

  • @guyhoghton399
    @guyhoghton399 15 дней назад +3

    Let *_S = 1/15 + 1/35 + 1/63 + 1/99 + 1/143_*
    ∴ _2S = (1/3 - 1/5) + (1/5 - 1/7) + (1/7 - 1/9) + (1/9 - 1/11) + (1/11 - 1/13)_
    ∴ _2S = 1/3 - 1/13 = 10/39_
    ⇒ _S = 5/39_
    Equation is *_aS = 100_*
    ⇒ *_a = 100/S = (100 * 39) / 5 = 780_*

  • @wes9627
    @wes9627 15 дней назад +4

    (3*7*11*13+9*11*13+5*11*13+5*7*13+5*7*9)a=5*7*9*11*13*100; a=4504500/5775=780