A nice math Olympiad problem |you should try to solve this

Поделиться
HTML-код
  • Опубликовано: 2 янв 2025

Комментарии • 116

  • @aminimam5118
    @aminimam5118 9 месяцев назад +22

    b=1-a substitute for b in a^2+b^2=2. You will get 2*a^2-2*a-1=0
    you can find a and b

    • @giuseppecaviggia4142
      @giuseppecaviggia4142 9 месяцев назад +1

      Questo è il modo migliore, non quello del video, che non so dove porti.

    • @filipeoliveira7001
      @filipeoliveira7001 8 месяцев назад +6

      Yeah, but it takes literally hours to raise it to the power of 11 and calculate🤦‍♂️🤦‍♂️

    • @shingshing01
      @shingshing01 5 месяцев назад

      The question is to find a solution to the differential equation, a" + b" =?. If it is understand that a and b can be functions then finding numerical values for a and b may be a part of the solution but will not determine what function a and function b are.

    • @shivkumaragarwal.1803
      @shivkumaragarwal.1803 5 месяцев назад

      @@shingshing01It's a¹¹+b¹¹ not a''+b''.

    • @turnandfacethedragon
      @turnandfacethedragon 5 месяцев назад

      This is what I did. Find a and b, square them for a^2 and b^2, square them for a^4 and b^4, square them for a^8 and b^8, multiply the ^4 by the ^8 and divide by the ^1's gives you a^11 and b^11. All you ever have are binomials over a numeric denominator and the a's and b's are the same except one is + while the other is -. Really wasn't complicated at all.

  • @dneary
    @dneary 7 месяцев назад +11

    There's a nice way using Viete's formulas - a,b are the roots of the equation x^2-(a+b)x + ab = 0, after finding ab=-1/2 you get 2x^2-2x-1 = 0 or x^(n+2)=x^(n+1) + (x^n)/2 - always true for roots a,b, giving the recursive relationship a^(n+2) + b^(n+2) = (a^(n+1) + b^(n+1)) + (a^n + b^n)/2.

  • @EasyMathSteps-SolveItEasy
    @EasyMathSteps-SolveItEasy 6 месяцев назад +4

    Nice problem, nice solution!

  • @MegaSARITE
    @MegaSARITE 9 месяцев назад +13

    Let a+b =S and ab=P. In the second equation a^2+b^2 =(a+b)^2-2ab=2 leads to ab=-1/2. If a and b are solutions of the quadratic equation X^2+PX+S=0, that give us a,b =(1±√3)/2.

    • @Ananya-lq9vq
      @Ananya-lq9vq 7 месяцев назад +1

      What I was thinking tbh

    • @thunderpokemon2456
      @thunderpokemon2456 5 месяцев назад

      @@MegaSARITE nah ab is -1

    • @MegaSARITE
      @MegaSARITE 5 месяцев назад

      @@thunderpokemon2456 recalcute and verify again!

    • @thunderpokemon2456
      @thunderpokemon2456 5 месяцев назад

      @@MegaSARITE yeah sry it negative 1 by 2

    • @lifee2299
      @lifee2299 4 месяца назад

      2 equations, 2 parameters enough to solve.
      (a-b)^2 = a^2 + b^2 - 2ab
      (a-b)^2 = 2 - 2*(-1/2) = 3
      a-b = sqrt(3)
      a+b = 1
      Add above
      2a = 1+sqrt(3)
      Hence a = (1+sqrt(3))/2 = 1.366
      Hence b = 1-1.366 = -0.366
      Therefore a^11 + b^11 = 31.

  • @karolissad.4270
    @karolissad.4270 9 месяцев назад +76

    DUDE YOU NEED TO DRAW 1'S NOT LIKE STICKS CAUSE I THOUGHT YOU WERE TAKING THE DOUBLE DERIVATIVE OF A AND B!!!

    • @filipeoliveira7001
      @filipeoliveira7001 8 месяцев назад +5

      Same😭

    • @gilbertodeoliveirafrota5345
      @gilbertodeoliveirafrota5345 7 месяцев назад +3

      not for gymnasium students

    • @thomasharding1838
      @thomasharding1838 7 месяцев назад +2

      YEAH! And in the answer it says g8g divided by 32. I never saw where the value of "g" was determined!!!

    • @filipeoliveira7001
      @filipeoliveira7001 7 месяцев назад

      @@thomasharding1838are u stupid lol it’s 989

    • @zyklos229
      @zyklos229 7 месяцев назад

      ​@@gilbertodeoliveirafrota5345hm? Not?

  • @rasmiranjansahoo6607
    @rasmiranjansahoo6607 7 месяцев назад +1

    Time taking and lengthy process. If you can find value of a-b by the formula (a-b)^2=(a+b)^2-4ab, after that find the value of a & b , finally you put the value get the answer

  • @johnstanley5692
    @johnstanley5692 6 месяцев назад

    another solution: let d = (a+b-1=0), given g= (a^2+b^2-2=0) get remainder g/d = 2*b^2-2*b-1 =0 => b=1/2 +/- sqrt(3)/2.
    use synthetic division (a^11+b^11)/(a+b-1) and get remainder R(b):
    R(b)=11*b^10 - 55*b^9 + 165*b^8 - 330*b^7 + 462*b^6 - 462*b^5 + 330*b^4 - 165*b^3 + 55*b^2 - 11*b + 1.
    now use synthetic division R(b)/(b-(1/2+/-sqrt(3)/2) -> 989/32 => final result (a^11+b^11)=989/32)

  • @MartijnLankhorst
    @MartijnLankhorst 7 месяцев назад +6

    Let Sn be a^n + b^n Then you can show Sn+1 = Sn + 1/2Sn-1
    S11 can be calculated with primary school math starting from S1 and S2

    • @dneary
      @dneary 7 месяцев назад +1

      And S_0 = a^0 + b^0 too!

  • @quinty.support
    @quinty.support 2 месяца назад

    a+b = 1
    a²+b² = 2
    Substitute a²+b² and rewrite it as (a+b)²-2ab = 2
    (a+b)²-2ab = 2
    [as (a+b) equals to 1]
    => (1)²-2ab = 2
    => 1-2ab = 2
    => -2ab = 1
    (multiply both sides by -1)
    so, 2ab = -1
    ab = -1/2
    S(n) = a^n + b^n
    S(n) = (a+b)[S(n-1)] - abs[n-2]
    S(n) = S[n-1] + 1/2[sn-2]
    s(0) = a^0 + b^0 = 1+1 = 2
    s(1) = 1 since a+b = 1
    s(2) = 2 (given)
    s(3) = s(2) + 1/2 s(1) = 2 + 1/2 = 2.5
    s(4) = s(3) + 1/2 s(2) = 2.5 + 1 = 3.5
    s(5) = s(4) + 1/2 s(3) = 3.5 + 1.25 = 4.75
    s(6) = s(5) + 1/2 s(4) = 4.75 + 1.75 = 6.5
    s(7) = s(6) + 1/2 s(5) = 6.5 + 2.375 = 8.875
    s(8) = s(7) + 1/2 s(6) = 8.875 + 3.25 = 12.125
    s(9) = s(8) + 1/2 s(7) = 12.125 + 4.4375 = 16.5625
    s(10) = s(9) + 1/2 s(8) = 16.5625 + 6.0625 = 22.625
    s(11) = s(10) + 1/2 s(9) = 22.625 + 1/2 (16.5625) = 8.28125 + 22.625 = 30.90625
    so 30.90625 is our final answer.................

  • @rajurkarj
    @rajurkarj 7 месяцев назад +2

    Perfect solution..👍. Here there is no other shortcut trick.. What is the point to find value of a and b?

    • @zyklos229
      @zyklos229 7 месяцев назад +1

      The point is, that both solutions are equal ... technically each valid expression for "?" is a solution from math point of view.

  • @jonathanwinesky1334
    @jonathanwinesky1334 5 месяцев назад

    nice

  • @daddykhalil909
    @daddykhalil909 9 месяцев назад +4

    1:07 too boring and complicated

  • @DivinityPurity
    @DivinityPurity 9 месяцев назад +4

    RHS value = power of a or b= 11
    Don't think too much

  • @satyanarayanakenguva3465
    @satyanarayanakenguva3465 9 месяцев назад +4

    Long proces

  • @mohanpujar7403
    @mohanpujar7403 4 месяца назад

    Brilliant mathematician 🎉 He rekindled my interest in mathematics at the age of 66 y

  • @anatolykatyshev9388
    @anatolykatyshev9388 7 месяцев назад +3

    I am always puzzled when I see solutions like that. Who the hell need it? You have two equations with two variables. Easily find both of them as (1+=sqrt(3)/2 and after any of their combination. How twisted mind should people have to post 16 minutes video with crazy computations for that task?

    • @zyklos229
      @zyklos229 7 месяцев назад +1

      Now he got a result in Q where your result needs to be assumed to be in R ... unless you can get dont get rid of the "twisted mind" root in the term
      (x+sqrt(y))^11 + (x-sqrt(y))^11 ... whereas with binomial sum at least the odd exponents for sqrt(y) should cancel and the even are integer then 🤔

    • @anatolykatyshev9388
      @anatolykatyshev9388 7 месяцев назад

      @@zyklos229Too complicated. In this particular case quadratic equation has 2 real roots. No other complex roots exists. To raise them in power 11 is not rocket science...

  • @nuvinpooliyadde7319
    @nuvinpooliyadde7319 6 месяцев назад

    How would you solve this question for an exam? 😁

  • @QuiDocetDiscit
    @QuiDocetDiscit 5 месяцев назад +1

    I grew a beard watching this...but still enjoyed it.

  • @n.662
    @n.662 6 месяцев назад +3

    Music no need for this video. You can say) .
    Think you!

  • @rumabhadra8941
    @rumabhadra8941 9 месяцев назад +2

    it is very easy to find the value of a-b

    • @shingshing01
      @shingshing01 5 месяцев назад

      But you are not trying to find values for a and b. You are trying to find what a" + b"equals.

  • @ADthehawk
    @ADthehawk 6 месяцев назад +7

    You could solve for a and b right after step 2. It would probably be easier (have to check).
    Also, this cannot be a math Olympiad question. This is something I was doing back in 9th grade or so for normal school exams.

  • @key_board_x
    @key_board_x 5 месяцев назад

    a + b = 1 ← this is the sum (S)
    (a + b)² = a² + 2ab + b²
    (a + b)² = (a² + b²) + 2ab
    1² = (2) + 2ab
    1 = 2 + 2ab
    2ab = - 1
    ab = - 1/2 ← this is the product (P)
    a & b are the solution of the equation:
    x² - Sx + P = 0 → where S is the sum and where P is the product
    x² - x - (1/2) = 0
    x² - x + (1/4) - (1/4) - (1/2) = 0
    x² - x + (1/4) = 3/4
    [x - (1/2)]² = 3/4
    x - (1/2) = ± (√3)/2
    x = (1/2) ± (√3)/2 → the 2 solutions are:
    a = (1 + √3)/2
    b = (1 - √3)/2
    a² = (1 + √3)²/2² = (1 + 2√3 + 3)/4 = (4 + 2√3)/4 = (2 + √3)/2
    b² = (1 - √3)²/2² = (1 - 2√3 + 3)/4 = (4 - 2√3)/4 = (2 - √3)/2
    a³ = a * a² = [(1 + √3)/2] * [(2 + √3)/2] = (2 + √3 + 2√3 + 3)/4 = (5 + 3√3)/4
    b³ = b * b² = [(1 - √3)/2] * [(2 - √3)/2] = (2 - √3 - 2√3 + 3)/4 = (5 - 3√3)/4
    a⁴ = (a²)² = (2 + √3)²/2² = (4 + 4√3 + 3)/4 = (7 + 4√3)/4
    b⁴ = (b²)² = (2 - √3)²/2² = (4 - 4√3 + 3)/4 = (7 - 4√3)/4
    a⁸ = (a⁴)² = (7 + 4√3)²/4² = (49 + 56√3 + 48)/16 = (97 + 56√3)/16
    b⁸ = (a⁴)² = (7 - 4√3)²/4² = (49 - 56√3 + 48)/16 = (97 - 56√3)/16
    a¹¹ = a³ * a⁸
    a¹¹ = [(5 + 3√3)/4] * [(97 + 56√3)/16] = (485 + 280√3 + 291√3 + 504)/64 = (989 + 571√3)/64
    b¹¹ = b³ * b⁸
    b¹¹ = [(5 - 3√3)/4] * [(97 - 56√3)/16] = (485 - 280√3 - 291√3 + 504)/64 = (989 - 571√3)/64
    a¹¹ + b¹¹ = [(989 + 571√3)/64)] + [(989 - 571√3)/64]
    a¹¹ + b¹¹ = (989 + 571√3 + 989 - 571√3)/64
    a¹¹ + b¹¹ = (2 * 989)/64
    a¹¹ + b¹¹ = 989/32

  • @MathSync
    @MathSync 7 месяцев назад

    i ❤ Mathematics

  • @johnstanley5692
    @johnstanley5692 6 месяцев назад

    alternative? 2*x^2-2*x-1 =0 & x^11+y^11= (2048*x^22-1)/(2048*x^11) . Use synthetic division (by 2*x^2-2*x-1) on both numerator and denominator to obtain remainders. i.e. x^11+y^11 -> (1129438*x+413402)/ (36544*x+13376) = 989/32 .

  • @Ramyleithy
    @Ramyleithy 8 месяцев назад +2

    ليه المرار الطافح ده ، استخدم نظرية ذات الحدين واخلص

  • @prime423
    @prime423 6 месяцев назад

    You could use the a to the fifth equation to the same benefit.

  • @ramadevi7820
    @ramadevi7820 9 месяцев назад +1

    What is 13multiplied by13,you did not check also

  • @faranakhter007.
    @faranakhter007. 9 месяцев назад +1

    2 ans

  • @prosenjitdas8269
    @prosenjitdas8269 5 месяцев назад

    Step 2 :::
    (a+b)^2= (a-b)^2+4ab =1
    (a-b)^2=(a+b)^2-4ab=1
    a-b=1
    Step 3::::
    a+b=1
    a-b=1
    By adding
    a=1
    So b=0
    Therefore,
    a^11+b^11=1^11+0^11=1

    • @Hero-00001
      @Hero-00001 5 месяцев назад

      😅😅bro u have mad the error in step-2 (a-b)= ±√3

  • @thunderpokemon2456
    @thunderpokemon2456 5 месяцев назад

    A+B=1
    (A+B)^2=1^2
    A^2+B^2+2AB=1
    A^2+B^2=-2AB+1
    1=-2AB
    AB=-1/2
    A=-1/2b
    A^11+B^11= -1/2B^11+B^11=2B^121-1/2B^11

  • @olivier7660
    @olivier7660 6 месяцев назад

    Change music ?

  • @cogicube
    @cogicube 9 месяцев назад +1

    C’est vraiment passer derrière son genou pour se gratter la tête. 😂

  • @dailang2144
    @dailang2144 6 месяцев назад

    smart way but ... too "dump". Easy to find a, b => done :-)

  • @stones-qn2uj
    @stones-qn2uj 5 месяцев назад

    Bro wrong answer cause at the end you have made a calculation mistake 247/8 + 1/32 = 988/32 = 247/8

    • @EpochRazael
      @EpochRazael 5 месяцев назад +1

      Bruh.
      247/8 = 988/32.
      988/32 + 1/32 = 989/32.
      He's right.

  • @ugoc3300
    @ugoc3300 5 месяцев назад

    And we never defined a or b. Interesting

  • @rexford9019
    @rexford9019 5 месяцев назад

    ((sin(23π/12)·√2)^11)+ ((cos(23π/12)·√2)^11)=989/32

  • @mohinkhan2503
    @mohinkhan2503 8 месяцев назад +1

    2

  • @michellewilson4217
    @michellewilson4217 7 месяцев назад +2

    Too long , attention span is 3 seconds max.🤣🤣🤣🧐🧐

  • @girlfridayz5148
    @girlfridayz5148 8 месяцев назад +1

    Algebra hates it

  • @MathSync
    @MathSync 7 месяцев назад

    “Fantastic explanation! I love how you break down complex concepts. I do similar math tutorials and challenges on my channel. Check it out for a fresh perspective on math problems!”

  • @JJ_TheGreat
    @JJ_TheGreat 9 месяцев назад +3

    11 (??)

  • @moh5463
    @moh5463 9 месяцев назад +5

    Solutions
    a=(1+3^1/2)/2
    b=(1-3^1/2)/2
    If you swap a and b, that is also a solution.

  • @rosslogan4154
    @rosslogan4154 5 месяцев назад

    The music is REALLY annoying

  • @carloheinz6465
    @carloheinz6465 6 месяцев назад

    If a+b=1 then 2×(a+b)=2=(a²+b²) 🤔 not so hard from here on.... 2a+2b-a²-b²=0 ....etc😊

  • @Rkssingh12121
    @Rkssingh12121 5 месяцев назад

    I would say 11😂

  • @AllDogsAreGoodDogs
    @AllDogsAreGoodDogs 7 месяцев назад +1

    You never said anything about 2ab, thus you changed the terms of the puzzle.
    Plus you misspelled "equation" early on, and your 1's look horrid.
    The answer is a=1.5 and b=-0.5. This fits the two terms of the puzzle that was stated.
    Oh, and your "music' is repetitive.

    • @mks-learning-easy
      @mks-learning-easy  7 месяцев назад +1

      Thank you for your feedback 😊

    • @AllDogsAreGoodDogs
      @AllDogsAreGoodDogs 7 месяцев назад

      @@mks-learning-easy You are welcome! The best of luck to you!

  • @atulbesra822
    @atulbesra822 5 месяцев назад

    Childish maths problems are passed off as maths Olympiad problems for gullible viewers. Maths Olympiad, like the sporting Olympiads are tough and beyond the abilities of normal humans.

  • @tarek-md2mm
    @tarek-md2mm 6 месяцев назад +1

    time wasted, too long, not the right way to solve this 😧

  • @niranjanchakraborty1139
    @niranjanchakraborty1139 5 месяцев назад

    Ans=2. , as a=1. & b=1. a^11+b^11=1^11+1^11=1+1=2.

    • @KaushikDutta-m4b
      @KaushikDutta-m4b 4 месяца назад

      Wrong. That would give a+b=2. But here a+b=1.

  • @prosenjitdas8269
    @prosenjitdas8269 5 месяцев назад

    Too much lengty.

  • @jairamkhambadkone6423
    @jairamkhambadkone6423 5 месяцев назад

    Answer is 2

  • @thomaswalczak993
    @thomaswalczak993 7 месяцев назад

    Besides, to multiply equations, you bring all terms to one side (e.g. a+b-1)=0 and then multiply them. You don't just multiply left terms with left terms and right terms with right terms. In other words, your solution is horse shit.

  • @prosenjitdas8269
    @prosenjitdas8269 7 месяцев назад +1

    0

  • @cd1168
    @cd1168 6 месяцев назад

    Music is horrible

  • @bornasarrafan4980
    @bornasarrafan4980 6 месяцев назад +1

    Dumb way to solve this, there is a much easier way to solve it