Integral of 3^sqrt(4x - 3)

Поделиться
HTML-код
  • Опубликовано: 3 фев 2025

Комментарии • 2

  • @alexchan4226
    @alexchan4226 15 часов назад

    +x/2

  • @gelbkehlchen
    @gelbkehlchen 9 часов назад

    Solution:
    ∫3^[√(4x-3)]*dx = ∫e^❮ln{3^[√(4x-3)]}❯*dx = ∫e^{ln(3)*[√(4x-3)]}*dx =
    -------------------------
    Substitution:
    u = √(4x-3) du = 1/2*1/√(4x-3)*4*dx dx = √(4x-3)/2*du = u/2*du
    -------------------------
    = 1/2*∫u*e^[ln(3)*u]*du =
    ------------------------------------
    Solution by partial integration:
    Partial integration can be derived from the product rule of differential calculus. The product rule of differential calculus states:
    (u*v)’ = u’*v+u*v’ |-u’*v ⟹
    (u*v)’-u’*v = u*v’ ⟹
    u*v’ = (u*v)’-u’*v |∫() ⟹
    ∫u*v’*dx = u*v-∫u’*v*dx
    ------------------------------------
    = 1/2*{u*e^[ln(3)*u]/ln(3)-1/ln(3)*∫e^[ln(3)*u]*du}
    = 1/2*{u*e^[ln(3)*u]/ln(3)-1/ln²(3)*e^[ln(3)*u]+C}
    = 1/[2*ln(3)]*[u*3^u-3^u/ln(3)]+C/2
    = 3^u/ln(3²)*[u-1/ln(3)]+D
    = 3^[√(4x-3)]/ln(9)*[√(4x-3)-1/ln(3)]+D