An Interesting Diophantine Equation

Поделиться
HTML-код
  • Опубликовано: 3 янв 2025

Комментарии • 6

  • @williamstraub3844
    @williamstraub3844 4 дня назад +1

    Closed, analytical integer solutions are impossible for me. All I can do is guess to get the right answer, but I never know if it's unique.

  • @Ali_Hussain2004
    @Ali_Hussain2004 4 дня назад +2

    What is the name of the program you use for writing?

    • @trojanleo123
      @trojanleo123 3 дня назад

      I think he uses Notability. I think.

  • @mircoceccarelli6689
    @mircoceccarelli6689 4 дня назад +1

    39 = 64 - 25 = 4^3 - 25^1 = 4^x - 25^y
    x = 3 , y = 1
    😊👍👋

  • @dan-florinchereches4892
    @dan-florinchereches4892 3 дня назад

    2^(2x)-5^(2y)=39
    I guess there is a reason for 2 showing up in powers so by diff of squares
    (2^x-5^y)(2^x+5^y)=1*39 or 3*13 because 2^x+5^y>0 always negative factors of 39 need not be considered. Also 2^x+5^y>2^x-5^y so we have only a few possible solutions
    2^x-5^y=1
    2^x+5^y=39
    + => 2^x=20 no integer solutions
    Or
    2^x-5^y=3
    2^x+5^y=13
    + => 2^x=8 x=3 and 2*5^y=10 y=1
    So the only ineger solution (3,1)

  • @pspprabhat
    @pspprabhat 3 дня назад

    2^×+5^y=13
    &2^×-5^y=3
    2(2^×)=16...=>×=3
    &2(5^y)=10&y=1