A Nice Algebra Problem | Math Olympiad | Find n?

Поделиться
HTML-код
  • Опубликовано: 17 янв 2025

Комментарии • 38

  • @ronbannon
    @ronbannon 19 дней назад +4

    5^n+3^n is increasing for all values of n; hence, if there's an integer solution, it must be unique. Indeed n=3 works and is, therefore, the only solution.

    • @SALogics
      @SALogics  19 дней назад +1

      Very nice! ❤

  • @xystusojadi8990
    @xystusojadi8990 19 дней назад +2

    Thanks for the strategy

    • @SALogics
      @SALogics  19 дней назад +1

      You are very welcome! ❤

  • @richardamullens
    @richardamullens 20 дней назад +4

    By inspection n=3.

    • @سیدمحمودرضاطاهری
      @سیدمحمودرضاطاهری 20 дней назад +1

      It is right

    • @SALogics
      @SALogics  20 дней назад +3

      Very nice! ❤

    • @davidseed2939
      @davidseed2939 19 дней назад

      yez n=3 and since the lhs is increasing and the rhs is constant there can only be one sokution.

    • @richardamullens
      @richardamullens 19 дней назад +1

      ​@@SALogics Surely there can only be one solution because both 3^n and 5^n are both monotonic and increasing. Though I can see that perhaps your solution is a general method that may work when trial and error doesn't give an obvious solution in a reasonable time.

  • @MrLegendary_am
    @MrLegendary_am 19 дней назад +2

    5^n + 3^n = 152
    5^n + 3^n = 125 + 27
    5^n + 3^n = 5^3 + 3^3
    By comparing
    n=3

    • @SALogics
      @SALogics  19 дней назад +3

      Very nice! ❤

    • @woskethebot
      @woskethebot 18 дней назад +1

      but where would you even get 125 + 27-

    • @MrLegendary_am
      @MrLegendary_am 18 дней назад +2

      @@woskethebot 152 = 125+27

  • @kajalbanerjee8220
    @kajalbanerjee8220 17 дней назад +1

    3

    • @SALogics
      @SALogics  16 дней назад +1

      Very nice! ❤

  • @yklim817
    @yklim817 20 дней назад +1

    n=3
    (5*5*5)+(3*3*3)
    125+27
    152

    • @SALogics
      @SALogics  20 дней назад +1

      Very nice! ❤

  • @himo3485
    @himo3485 19 дней назад +1

    5^n+3^n=125+27=5^3+3^3 n=3

    • @SALogics
      @SALogics  19 дней назад +1

      Very nice! ❤

  • @pspprabhat
    @pspprabhat 19 дней назад +1

    5^n+3^n=152
    =125+27=5^3+3^3
    =>n=3

    • @SALogics
      @SALogics  19 дней назад +1

      Very nice! ❤

  • @JethroFraser-b4p
    @JethroFraser-b4p 20 дней назад +1

    Why not simply solve it by inspection as we do with cubic equations....

    • @SALogics
      @SALogics  20 дней назад +2

      This is not allowed in olympiad! ❤

  • @prollysine
    @prollysine 20 дней назад +1

    152=125+27 , 125+27=5^3+3^3 , 5^n-5^3=0 , 3^n-3^3=0 , --> n=3 , ..... ..... .....

    • @SALogics
      @SALogics  20 дней назад +2

      Very nice! ❤

    • @prollysine
      @prollysine 19 дней назад

      @@SALogics Thanks!

  • @narsinhapotdar7215
    @narsinhapotdar7215 20 дней назад +2

    nice

  • @matteooliveri6697
    @matteooliveri6697 19 дней назад +1

    n=3, because 125+27=152.

  • @minh2708
    @minh2708 7 дней назад +1

    X,y€ Z+ x+y < x^2 - xy + y^2 => WHY???? x=y=1 € Z+ , x+y > x^2 -xy +y^2 😢

    • @SALogics
      @SALogics  6 дней назад +1

      x and y should'nt be same! ❤

  • @valentinaivanova4806
    @valentinaivanova4806 19 дней назад +1

    Why are X and Y integers greater than zero? It's not obvious at all.

    • @SALogics
      @SALogics  19 дней назад +1

      Because n is a positive integer!❤

    • @valentinaivanova4806
      @valentinaivanova4806 19 дней назад

      @SALogics For N - yes, but for "5 rise to the power of (N/3)" this is generally not true. That is, the solution is found from a false assumption. But, fortunately, it was found and it was possible to prove that it is unique.

  • @ИринаСавостин
    @ИринаСавостин 20 дней назад +2

    Методом подбора :n=3.
    Ваш способ решения правильный, но проще сделать таким образом
    5^[n*2*(1/2)]+3^[n*2*(1/2)] =152
    Замена:5^(п/2)=х
    3^(п/2)=у
    х^2 +у ^2 =152

    • @SALogics
      @SALogics  20 дней назад +2

      Very nice! ❤