A Nice Quintic Equation

Поделиться
HTML-код
  • Опубликовано: 22 дек 2024

Комментарии • 5

  • @wtspman
    @wtspman 21 час назад +3

    In the first method, where you used the quadratic formula for the 3rd factor, the denominator should have been 2a = 6.

  • @shmuelzehavi4940
    @shmuelzehavi4940 14 часов назад +1

    The solution to this equation may be written in a compact form as:
    x = 1/2 + i (n/6) √3 , {n} = {0 , ± 1 , ± 3}

  • @StaR-uw3dc
    @StaR-uw3dc 20 часов назад +1

    Other approach:
    Multiply both sides by 2⁶=64, substitute t=2x-1 and get (t+1)⁶=(t-1)⁶.
    After expanding, reducing and factoring we get the quintic in t: t(3t²+1)(t²+3)=0 with roots t=0, t=±(√3/3)i, t=±√3i.
    Finally x=(t+1)/2 and x=1/2, x=(3±√3i)/6, x=(1±√3i)/2

    •  9 часов назад +1

      great. The unique real solution 1/2 is obvious by the symmetry of the problem, so the substitution makes everything flow smoothly

  • @Don-Ensley
    @Don-Ensley 20 часов назад

    problem
    x⁶ = (x-1)⁶
    (x-1)⁶ - x⁶ = 0
    This is quintic because the x⁶ subtracts off of the expansion of (x-1)⁶, so we expect 5 roots.
    Factor as a difference of 2 cubes.
    [ (x-1)² - x²] [ (x-1)⁴ +(x-1)² x² +x⁴] = 0
    Use the zero product property.
    First term:
    (x-1)² - x² = 0
    (x-1-x)(x-1+x) = 0
    2x = 1
    x = 1/2
    Second term:
    (x-1)⁴ +(x-1)² x² +x⁴ = 0
    (x-1)² [ (x-1)² + x²] + x⁴ = 0
    (x²-2x+1)(2x²-2x+1) + x⁴ = 0
    3(x²-x)² + 4(x²-x) + 1 = 0
    Let
    y = x²-x
    3y² +4y + 1 = 0
    y = [ -4 ± √4 ] / 6
    = ( -2 ± 1 ) / 3
    = -1, -1/3
    x²-x = -1
    (x - 1/2) ²-1/4 = -1
    x -1/2 = ± i√3 /2
    x = 1/2 ± i√3 /2
    x²-x = -1/3
    (x - 1/2) ²-1/4 = -1/3
    (x - 1/2) ² = -1/12
    x - 1/2 = ± i √3 / 6
    x = 1/2 ± i √3 / 6
    answer
    x ∈ { 1/2,
    (1 - i√3) / 2,
    (3 - i√3) / 6,
    (3 + i√3) / 6,
    (1 + i√3) / 2 }