Can you find area of the Blue Quadrilateral? | (Fun Geometry Problem) |

Поделиться
HTML-код
  • Опубликовано: 6 фев 2025

Комментарии • 12

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب 18 дней назад +3

    Let's assume that

  • @jimlocke9320
    @jimlocke9320 18 дней назад

    This is marioalb9726's method, done with the correct value of

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 18 дней назад

    {16°p+30°TV+60°R}={106°PTVR+74°S}=180°PTVRS 360°/180°PTVRS=2PTVRS (PTVRS ➖ 2PTVRS+2).

  • @matthieudutriaux
    @matthieudutriaux 18 дней назад +1

    Original and impressive !
    Here are my methods :
    P,Q,T,V are on the (semi)circle of center S and radius R.
    angle(RPV)=c ; angle(RVP)=d
    c+60°+d=180° then d=120°-c
    area(PQS)=16
    PS*cos(c)*PS*sin(c)=16
    1/2*R^2*sin(2*c)=16
    R^2*sin(2*c)=32
    area(VTS)=30
    SV*cos(d)*SV*sin(d)=30
    1/2*R^2*sin(2*d)=30
    R^2*sin(2*d)=60
    R^2*sin(240°-2*c)=60
    R^2*(sin(240°)*cos(2*c)-cos(240°)*sin(2*c))=60
    R^2*(-sqrt(3)/2*cos(2*c)-(-1/2)*sin(2*c))=60
    R^2*(-sqrt(3)*cos(2*c)+sin(2*c))=2*60
    -sqrt(3)*R^2*cos(2*c)+R^2*sin(2*c)=120
    -sqrt(3)*R^2*cos(2*c)+32=120
    sqrt(3)*R^2*cos(2*c)=-88
    R^2*cos(2*c)=-88/sqrt(3)
    (R^2*cos(2*c))^2+(R^2*sin(2*c))^2=(-88/sqrt(3))^2+32^2
    R^4*((cos(2*c))^2+(sin(2*c))^2)=88^2/3+32^2
    R^4=8^2*(121/3+16)
    R^4=8^2*169/3
    R^4=(8*13)^2/3
    R^2=104/sqrt(3)
    Method 1 : we will notice that QST is equilateral and RQT similar to PRV with ratio=1/2
    angle(QST)=180°-angle(PSQ)-angle(VST)
    angle(PSQ)=180°-2*angle(RPV)=180°-2*c
    angle(VST)=180°-2*angle(RVP)=180°-2*d
    angle(QST)=180°-(180°-2*c)-(180°-2*d)
    angle(QST)=2*(c+d)-180°
    angle(QST)=2*120°-180°
    angle(QST)=60°
    But QST is an isosceles triangle then :
    angle(SQT)=angle(STQ)=(180°-angle(QST))/2=(180°-60°)/2=60°
    Then, QST is an equilateral triangle.
    QT=QS=ST=R
    angle(RQT)=180°-angle(SQT)-angle(PQS)
    angle(RQT)=180°-60°-c
    angle(RQT)=120°-c
    angle(RQT)=d
    angle(RTQ)=180°-angle(STQ)-angle(STV)
    angle(RQT)=180°-60°-d
    angle(RQT)=120°-d
    angle(RQT)=c
    Triangle RQT is similar to triangle PRV : same angles : c, d, 60°
    QT=R=PV/2.
    Then : QR=RV/2 and RT=PR/2 and :
    Area(RQT)=(1/2)^2*Area(PRV)
    Area(RQT)=1/4*Area(PRV)
    4*Area(RQT)=Area(PRV)
    4*Area(RQT)=Area(RQT)+Area(QST)+Area(PQS)+Area(STV)
    3*Area(RQT)=Area(QST)+Area(PQS)+Area(STV)
    Area(RQT)=1/3*Area(QST)+1/3*(Area(PQS)+Area(STV))
    Area(RQT)=1/3*Area(QST)+1/3*(16+30)
    Area(QRTS)=Area(RQT)+Area(QST)
    Area(QRTS)=4/3*Area(QST)+1/3*(16+30)
    Area(QRTS)=4/3*sqrt(3)/4*R^2+46/3
    Area(QRTS)=1/sqrt(3)*104/sqrt(3)+46/3
    Area(QRTS)=104/3+46/3
    Area(QRTS)=50 u²
    Method 2 : we will calculate tan(c) and tan(d)
    tan(2*c)=(R^2*sin(2*c))/(R^2*cos(2*c))
    tan(2*c)=32/(-88/sqrt(3))
    tan(2*c)=-4*sqrt(3)/11
    With formula : tan(2*c)=2*tan(c)/(1-(tan(c))^2), we obtain the following second degree equation :
    2*sqrt(3)*T^2-11*T-2*sqrt(3)=0 (with T=tan(c))
    T=tan(c)=2*sqrt(3) (because we can see that tan(c)>0 then the other solution T=tan(c)=-sqrt(3)/6 is impossible)
    tan(d)=tan(120°-c)
    tan(d)=(tan(120°)-tan(c))/(1+tan(120°)*tan(c))
    tan(d)=(-sqrt(3)-2*sqrt(3))/(1-sqrt(3)*2*sqrt(3))
    tan(d)=-3*sqrt(3)/(-5)
    tan(d)=3*sqrt(3)/5
    Area(PRV)=1/2*Base*Height
    Base=PV=2*R
    Height=Base*tan(c)*tan(d)/(tan(c)+tan(d)) : i don't explain this formula i know
    Area(PRV)=2*R^2*tan(c)*tan(d)/(tan(c)+tan(d))
    Area(PRV)=2*104/sqrt(3)*2*sqrt(3)*3*sqrt(3)/5/(2*sqrt(3)+3*sqrt(3)/5)
    Area(PRV)=96
    Area(PRV)=Area(QRTS)+Area(PQS)+Area(STV)
    96=Area(QRTS)+16+30
    Area(QRTS)=50 u²

  • @marioalb9726
    @marioalb9726 18 дней назад +1

    Supposing that isosceles triangle TSV is a right triangle:
    Side of isosceles right triangle:
    ½s² = 30cm² ---> s= √60=2√15cm
    Base of larger triangle:
    b = 2s = 4√15 cm
    Angle RPV:
    α = 180°-60°-45°= 75°
    Sine rule:
    c/sin75°= b/sin60° --> c=17,279 cm
    Area of triangle RPV:
    A₁= ½.b.c.sin45° = 94,641 cm²
    Quadrilateral shaded area:
    A = A₁-30-16 = 48,64 cm²
    (which is an approximate result)

    • @matthieudutriaux
      @matthieudutriaux 18 дней назад +1

      It's a pity.
      In the drawing of this video (which seems to be done with right proportions), triangle TSV seems to be an isosceles right-angled triangle.
      But it's false.
      tan(angle(SVT))=3*sqrt(3)/5=1,039 on average (and not equal to 1)
      angle(SVT)=angle(STV)=46,1° on average (and not 45°)
      angle(VST)=2*arctan(5/(3*sqrt(3)))=87,8° on average (and not 90°)
      Then, the answer is A=50 u² (and not 48,64 cm²)

    • @marioalb9726
      @marioalb9726 18 дней назад +2

      ​​​@@matthieudutriaux
      Yes, I wrote "Supposing, it was an approximate result"
      I couldn't solve this

    • @jimlocke9320
      @jimlocke9320 18 дней назад +2

      You found that

    • @jimlocke9320
      @jimlocke9320 18 дней назад +1

      @@marioalb9726 I computed the correct value for the angle that you assumed was 90°, and followed your method. I've posted my calculations as a separate comment.

  • @marioalb9726
    @marioalb9726 18 дней назад +1

    Supposing that isosceles triangle TSV is a right triangle:
    Side of Isosceles right triangle:
    ½s² = 30cm² ---> s= √60cm
    Internal angles:
    α = 180°-60°-45°= 75° (∠RPV)
    β = 180°-(2*75°)= 30° (∠QSP)
    δ = 90°-β = 60° , so ΔQST is equilateral
    γ = 180°-α-δ = 45° (∠RQT)
    Sine rule, triangle QRT:
    a/sin75°=s/sin60° --> a=8,6395 cm
    Triangle RQT:
    A₁= ½.a.s.sin45° = 23,66cm²
    Equilateral triangle QST:
    A₂ = √3/4 s² = 25,98 cm²
    Quadrilateral shaded area:
    A = A₁+A₂ = 49,64 cm² ( Which is an approximate result )

    • @matthieudutriaux
      @matthieudutriaux 18 дней назад +1

      It's a pity.
      In the drawing of this video (which seems to be done with right proportions), triangle TSV seems to be an isosceles right-angled triangle.
      But it's false.
      tan(angle(SVT))=3*sqrt(3)/5=1,039 on average (and not equal to 1)
      angle(SVT)=angle(STV)=46,1° on average (and not 45°)
      angle(VST)=2*arctan(5/(3*sqrt(3)))=87,8° on average (and not 90°)
      Then, the answer is A=50 u² (and not 49,64 cm²)

    • @marioalb9726
      @marioalb9726 18 дней назад +2

      Yes, I wrote "an approximate result, supposing that ...." )
      I Couldn't solve it, yet