A RIDICULOUSLY AWESOME INTEGRAL! (yes another one)

Поделиться
HTML-код
  • Опубликовано: 30 янв 2025
  • A few transformations here and there, some special functions and Feynman's trick works every time.
    The shirt plus more cool merch:
    my-store-ef6c0...
    My complex analysis lectures:
    • Complex Analysis Lectures
    Support my work via Patreon:
    / maths505
    You can follow me on Instagram for write ups that come in handy for my videos and DM me in case you need math help:
    ...
    My LinkedIn:
    / kamaal-mirza-86b380252

Комментарии • 45

  • @lakshay3745
    @lakshay3745 6 месяцев назад +36

    What a shame that the euler mascaroni constant got cancelled in the end :(

    • @Spiderp-p1l
      @Spiderp-p1l 6 месяцев назад +4

      Lil gammas are going extinct in this cruel calculus world😭

    • @Aditya_196
      @Aditya_196 6 месяцев назад

      Indeed cuz there was a simpler way to evaluate the integral 🥲 2:46 here if u notice that he takes t² = u then u = sin theta , the integral is simply 1/4* 0 to pi/2 of Ln(sinx) dx

  • @stefanalecu9532
    @stefanalecu9532 6 месяцев назад +18

    9:18 bro managed to plug his merch in the middle of solving an integral, math RUclips (mathtube? methtube?) is on a whole new level

  • @CM63_France
    @CM63_France 6 месяцев назад +18

    Hi,
    "terribly sorry about that" : 1:18 , 3:52 , 8:16 ,
    "ok, cool" : 2:57 , 4:38 , 6:45 , 8:56 .

    • @Player_is_I
      @Player_is_I 6 месяцев назад

      Always look for this comment

  • @hamdansaad3406
    @hamdansaad3406 6 месяцев назад +4

    2:06 there is a simpler approach by letting t^2 = u then integration by parts afterwards you would be left with integral of arcsin(x) / x by letting x = sin(t) you will find the value easily, nice video

  • @Khamul7618
    @Khamul7618 6 месяцев назад +12

    There is an alternative solution. If we use substitution t=sqrt(cos(phi)) at 1:58, we get a well known integral from 0 to pi/2 of ln(cos(x)).

    • @Mr_Mundee
      @Mr_Mundee 6 месяцев назад

      you can also do t=sqrt(sin(phi)) which is easier because you dont have to switch the limits of integration due to the negative created by cosine's derivative

  • @kingzenoiii
    @kingzenoiii 6 месяцев назад +7

    pov: u just learnt about complex functions and have decided that they are the BEST way to solve any integral (which is true, and they are incredibly beautiful)

  • @wondwosen3735
    @wondwosen3735 6 месяцев назад +1

    I think another possible method is to let sin(x) = sqrt(y), it will reduce the integral to a simpler form. Anyhow great work as usual.

  • @gambitito
    @gambitito 6 месяцев назад +16

    why does euler macaroni constant always cancel out??? i am going to cry.

  • @MrWael1970
    @MrWael1970 6 месяцев назад

    Awesome result. Thank you for your innovative videos.

  • @nyghts7
    @nyghts7 6 месяцев назад

    2:09 you can let t^2=u and then after u=sin(theta), you have 1/4 euler's log trig integral

  • @riadsouissi
    @riadsouissi 6 месяцев назад +1

    Substituting t=sin(x) then cos(y)=t/sqrt(2) gives 1/4*integral(log(cos(y),0,pi/2). Almost straightforward result.
    Edit: another substitution is required, z=2y.

  • @vladimir10
    @vladimir10 6 месяцев назад

    Awesome video!!!
    It's just made my morning 🎉

  • @Samir-zb3xk
    @Samir-zb3xk 6 месяцев назад +1

    after some substitutions i found it was equal to a quarter of (0 to π/2) ∫ ln(cos(x)) dx which can be solved using the kings symmetry property

  • @azmath2059
    @azmath2059 6 месяцев назад

    Wonderful end result

  • @peterluo8591
    @peterluo8591 6 месяцев назад

    After the integral at 3:28, I used the substitution p=1-t and symmetry to get that I=(1/32)*\int_0^1 ln(t(1-t))/sqrt(t(1-t)) dt. Wonder if this approach leads anywhere...

  • @thegermanempire9015
    @thegermanempire9015 6 месяцев назад +1

    love this channel/

  • @slavinojunepri7648
    @slavinojunepri7648 6 месяцев назад

    This is art!

  • @Player_is_I
    @Player_is_I 6 месяцев назад

    Love ur vids❤

  • @Ghaith7702
    @Ghaith7702 6 месяцев назад

    what a genius.

  • @esphix
    @esphix 6 месяцев назад +2

    "Talking is a lot harder than math"

  • @trelosyiaellinika
    @trelosyiaellinika 6 месяцев назад

    Awesome! Thanks for this. I was really getting thirsty for some Beta, Gamma and Digamma...

  • @codenameduckfin
    @codenameduckfin 4 месяца назад

    "Talking is harder than doing math" - Truth

  • @insouciantFox
    @insouciantFox 6 месяцев назад

    I would have used logarithmic differentiation to go directly to ψ

  • @beuhs545
    @beuhs545 6 месяцев назад

    the plug went crazy

  • @Player_is_I
    @Player_is_I 6 месяцев назад

    What software do you use???

    • @maths_505
      @maths_505  6 месяцев назад +1

      Samsung notes

  • @sehreenmirza2714
    @sehreenmirza2714 6 месяцев назад

    Yayyy

  • @insane_mind
    @insane_mind 6 месяцев назад +1

    again first like and comment

  • @GeoPeron
    @GeoPeron 6 месяцев назад

    My urge to make things compact are telling me that you should make the π/8 an exponent inside the logarithm 😀

    • @lol1991
      @lol1991 6 месяцев назад

      I think the result is close enough that we can just call it -e/10

  • @stefanalecu9532
    @stefanalecu9532 6 месяцев назад +1

    You always use the beta function, why not the alpha function? That's not very sigma of you

    • @maths_505
      @maths_505  6 месяцев назад +4

      The person solving it is the alpha 😎🔥🤣

    • @stefanalecu9532
      @stefanalecu9532 6 месяцев назад

      ​@@maths_505touche