improper integrals Types 1 and 2

Поделиться
HTML-код
  • Опубликовано: 10 фев 2025
  • In this video, I showed how to rewrite and compute an improper integral of both types.

Комментарии • 27

  • @AzharLatif-d4z
    @AzharLatif-d4z 10 месяцев назад +8

    This Guy is Mathematician par excellence for all learners.Master of chalk and talk, respecting traditinal values of teacher and the taught rare example of fleeting era.

  • @chengkaigoh5101
    @chengkaigoh5101 10 месяцев назад +21

    Incredible that a line of infinite length encloses a finite region

  • @argkourpas1
    @argkourpas1 2 месяца назад +1

    Congrats my friend. Like the blackboard and working with chalk. You 're a brilliant example for all the teachers...!!

  • @antonionavarro1000
    @antonionavarro1000 10 месяцев назад +3

    Hubiera apostado la vida a que la integral no convergía, por el parecido de su gráfica con la gráfica de 1/x. Pero no, me equivoqué y efectivamente converge a √6/2•π
    Gracias por el ejercicio.

  • @glorrin
    @glorrin 10 месяцев назад +9

    Hello there, great video as always.
    just a small mistake that didnt impact the answer.
    On the one before last blackboard
    I* = sqrt(6) [ lim t->0+ [missing - here] tan-1 sqrt(t/6) + lim t-> inf tan-1 sqrt(t/6)]
    sinc lim t->0 tan-1 0 is 0 it doesnt matter if it is + or -
    but still.
    Also missing a * on the very last line but that is insignificant.

  • @gp-ht7ug
    @gp-ht7ug 10 месяцев назад +12

    Isn’t there a little mistake when you put back sqrt(6)? Check the signs. But at the end the result doesn’t change

    • @Tomorrow32
      @Tomorrow32 10 месяцев назад +6

      SQRT( number) is always positive.

    • @AquaticWaters
      @AquaticWaters 10 месяцев назад +3

      No yeah you’re right- it was supposed to be a negative when he brought the numbers down, but in the end it didn’t matter since +/- 0 is still 0

    • @joaomane4831
      @joaomane4831 7 месяцев назад

      That is not what they meant...
      ​@@Tomorrow32

  • @Annihilator-01
    @Annihilator-01 10 месяцев назад +4

    Thank you so much ❤

  • @wolfwittevrongel8067
    @wolfwittevrongel8067 10 месяцев назад +6

    The tumbnail is wrong tho, great video

  • @iquesillos12
    @iquesillos12 10 месяцев назад +3

    Amazing!!

  • @tomctutor
    @tomctutor 10 месяцев назад

    I notice that the integrand 3/[(√x)(x+6)] has no roots in the ℝ domain. So the integral is indeed the area under the curve.
    You did not mention areas so not an issue here; but if it were the area you were calculating then you would need to check for roots first. (A lot of students forget to do this and just blindly assume the definite integral of a function is equal its area). 😁

  • @saarike
    @saarike 9 месяцев назад

    Simply Great!!!!

  • @alifiras1130
    @alifiras1130 10 месяцев назад +3

    Can i solve the integral by using partial fractions?

    • @PrimeNewtons
      @PrimeNewtons  10 месяцев назад +5

      Try it.

    • @nothingbutmathproofs7150
      @nothingbutmathproofs7150 10 месяцев назад +6

      @@PrimeNewtonsperfect response!

    • @tomctutor
      @tomctutor 10 месяцев назад

      pf's you would get:
      (1/2√x) - (√x/(2(x+6))
      don't know about the integration though, maybe you could try that and let us know?

    • @alifiras1130
      @alifiras1130 10 месяцев назад

      @@tomctutor i will end with ln(∞) and my calculator cant find that value

    • @tomctutor
      @tomctutor 10 месяцев назад

      @@alifiras1130 Ok the integral of the _pf_ form as shown is
      ∫1/2√x .dx - ∫√x/(2 (x + 6)) .dx = [√x] -[√x - √(6) tan^(-1)(√x/√6)] = √(6) tan^(-1)(√x/√6)
      then you take _ℓim_ t ->0 part from the _ℓim_ t ->∞ part as in the end of the video to get your answer.

  • @Sammi1-ps2
    @Sammi1-ps2 6 месяцев назад

    Hello, I dont understand why you substituted with root 6 tan rather than just tan theta, why root 6

  • @cadengladden1697
    @cadengladden1697 4 месяца назад

    Im confused how did the inverse tan turn back to tan

  • @Bedoroski
    @Bedoroski 9 месяцев назад

    Anyone figured out how to evaluate this integral by parts? I hardly found any luck

  • @wolfwittevrongel8067
    @wolfwittevrongel8067 10 месяцев назад +3

    WoW what a problem