Introduction to combinations | Probability and Statistics | Khan Academy

Поделиться
HTML-код
  • Опубликовано: 22 янв 2025

Комментарии • 157

  • @DakoGamerZ
    @DakoGamerZ 6 лет назад +497

    Imagine going to sleep every night , resting and knowing you have helped so many people out there to learn! Hats off to you man

    • @mariansoltan1318
      @mariansoltan1318 4 года назад +7

      Yeah, and as a viewer image going to bed knowing you just learnt so much and actually understood it. (Something schools are not very good at)

    • @TShorty929
      @TShorty929 4 года назад +12

      He really has changed the world. I watched these in highschool during the late 2000s and again, in 2020, I've come back to refresh some concepts! The legacy of Khan Academy is incredible

    • @winningsmile69
      @winningsmile69 3 года назад

      Sumblero

  • @salimalajmi4691
    @salimalajmi4691 4 года назад +90

    This was very helpful! I'm 34 and last year I decided to go back to university. this semester I'm taking statistics intro and I have never seen or heared of permutations and combinations. This video explained it all in less than 10 min. Thanks Khan (or whoever is talking in the video).

    • @inversechaos9256
      @inversechaos9256 Год назад +6

      ​@@keevankk873 Salman khan

    • @h.k3260
      @h.k3260 Год назад +3

      How did uni go? Good luck!

    • @salimalajmi4691
      @salimalajmi4691 Год назад +8

      @@h.k3260 Graduated last semester 👍🏼

    • @h.k3260
      @h.k3260 Год назад

      Congrats! @@salimalajmi4691

    • @stickylink6462
      @stickylink6462 Год назад +2

      ​@@salimalajmi4691congratulations 🎊 proud of you!

  • @paulybanez9614
    @paulybanez9614 4 года назад +70

    dude thank you so much, we don't have online classes and our school just sent us worksheets to do.Thanks a bunch man

  • @lcfsoft
    @lcfsoft 9 лет назад +136

    He's used all three by now "have sitted", "have sat" and "have sitten".

    • @cera1623
      @cera1623 9 лет назад +14

      +Alexander Steshenko My mind is so tired trying to grasp combinations but your comment just made me laugh out loud!😂😂

    • @kittyfuntime
      @kittyfuntime 8 лет назад +1

      Thank you so much!

    • @dominantb1rd809
      @dominantb1rd809 7 лет назад

      Cera its hard

    • @nbme-answers
      @nbme-answers 6 лет назад +1

      neological thought is the expression of genius.

    • @747Sean
      @747Sean 5 лет назад

      Alexander Steshenko 😂

  • @lokeshgoyal9419
    @lokeshgoyal9419 Год назад +4

    Those who have difficulty imagining this concept logically, Let me put in simple words !
    First you calculate permutation for given question, as you know permutation generates all the ways we can arrange elements, including duplicates!
    Now to calculate combinations, all we have to remove duplicates.
    For question A,B,C,D,E,F and total spots available is 3, then permutation would be 120
    And if we want to calculate combinations, all we have to remove the duplicates from our permuations.
    So if we calculate, how many ways we can arrange 3 people at 3 spots, the answer would be 6. Meaning, that each 3 letters produces 6 different mutations, for which we should count 1 in case of calculating combinations. So if we divide total permutations by toatl dupllicates generated by each 3 letters at a time. The answer would be 20.
    Conclusion : Permutation tells us all the ways including duplicates as well (according to combinations point of view)
    So to calcuate combination all we have to remove is the duplicates generated by n spots permuation.

  • @lynnkonyali1433
    @lynnkonyali1433 7 лет назад +89

    thanks for not making me feel stupid anymore

  • @noopurmehrotra
    @noopurmehrotra 3 года назад +11

    In case someone is wondering "what possibly could those 20 combinations be?" well here they are
    ABC, ABD, ABE, ABF, ACD, ACE, ACF, ADE, ADF, AEF, BCD, BCE, BCF, BDE, BDF, BEF, CDE, CDF, CEF, DEF

  • @UltimateBargains
    @UltimateBargains 10 лет назад +57

    So, is a combination lock misnamed? Is the true name of a combination lock a permutation lock?

    • @tadm123
      @tadm123 9 лет назад +2

      yes

    • @Jesse_Meyer
      @Jesse_Meyer 8 лет назад +6

      UltimateBargains omg lol my teacher told us that in like the sixth grade. I finally know what she meant!

  • @SouL-ob5wx
    @SouL-ob5wx 11 месяцев назад

    Very helpful. I've been racking my brain going through a lot of different lectures trying to understand the difference between the two but this video cleared it up. Thank you

  • @317mx
    @317mx 3 года назад +2

    omg tysm im in 7th and i have a quiz tmr first period and I have no idea what to do and this helped a lot so ty omg

  • @mansimarkaur6544
    @mansimarkaur6544 Год назад

    You explain the origin of the concepts so well which is something often neglected! Thank you!!

  • @jossmits153
    @jossmits153 4 года назад +1

    super explanation. no formulas needed. back to basics. another hat off for you professor.

  • @johanliebert8637
    @johanliebert8637 3 года назад +1

    You are a true genius, I like the way you write, the way you speak and illustrate things in a simple way, thanks a lot !!

    • @nemo9540
      @nemo9540 2 года назад

      I really struggled with math since I was a kid and none of the teachers took the time to explain how simple topics such as ratio and trigonometry works. It wasn't until I was took math again in college I met this 1 lecturer who took the time to explain things in a different way, 8 finally understood and scored an A* for which I'm so proud of even today.

    • @nemo9540
      @nemo9540 2 года назад

      It just takes that one teacher and your entire understanding opens up and that was why I went on to get a Ba Hons degree in primary education. He was such an inspiration and strangely looked exactly like kiefer sutherland. (And yes I did make him say "previously on 24 lo.).

  • @hugodivi5798
    @hugodivi5798 Год назад +1

    Really well explained, it all came together at the end, THANK YOU!

  • @TasyaAdzkiya
    @TasyaAdzkiya Год назад +1

    So, the reason why we divide the number of arrangements/permutations by the number of arrangements in a combination group is that because now that we don't care about the order, we consider the (in this case) 6 arrangements in a combination group of (in this case) 3 letters as one whole entity/one group that contain 3 letters in it because that's all that matters now that we don't care about the order.

    • @buhzs9663
      @buhzs9663 Год назад

      I'm kinda slow why is the number of ways 6, is it because there are 6 people

  • @xcorpionxyed2078
    @xcorpionxyed2078 3 года назад +2

    I literally had no idea until now, what does combination even mean, despite I've completed 2 yrs of my statistics education 😁😁😂😂😂😂😂
    Kudos sir....

  • @abiyermias3037
    @abiyermias3037 4 года назад +7

    Now, I understand the formula for combinations. Thank you!

  • @aryansinha1114
    @aryansinha1114 4 года назад +3

    He's a Godly being🔮

  • @Snoo29293
    @Snoo29293 3 года назад +2

    Wow, I now know how to calculate possible combinations of stuff

  • @haridaskr1586
    @haridaskr1586 6 лет назад +6

    Well explained! Thanks! All this while I didn't know the concept of combinations

  • @Ella-fv8hv
    @Ella-fv8hv Год назад

    Thank you so mach Sal wish u all the best❤

  • @Giankurl
    @Giankurl Год назад

    Thank you for this detailed tutorial on combinations, sir!

  • @AtulSharma-rf6lg
    @AtulSharma-rf6lg 9 месяцев назад

    Such a beautiful explanation
    Thankyou for providing such vedioa

  • @formerunsecretarygeneralba9536
    @formerunsecretarygeneralba9536 10 месяцев назад

    Permutations include all possible arrangements.
    Combinations are only about inclusion and not arrangements.

  • @dmitriypronichev7048
    @dmitriypronichev7048 3 года назад +2

    very good explanation, thanks a lot!

  • @adengoher4343
    @adengoher4343 3 года назад +1

    Thank you for this video!

  • @sriram-zn3ic
    @sriram-zn3ic 4 года назад +1

    This dude is simply awesome

  • @ananyav3395
    @ananyav3395 4 года назад

    Thank you so much sir!!🙏🙏🙏🙏🙏🙏🙏

  • @kartikvarshney9257
    @kartikvarshney9257 4 года назад +1

    He is a great teacher

  • @nurhossain5632
    @nurhossain5632 7 лет назад +1

    Thanks a lot sir you clear out my confusion

  • @ramadhankareem5767
    @ramadhankareem5767 5 лет назад +2

    Thank you!

  • @NathanAndreiBacsa
    @NathanAndreiBacsa Год назад

    This video explained probability and statistics so much thank you or this video

  • @patrickstar2014
    @patrickstar2014 8 лет назад +5

    How would you go about setting up a problem for seating these people (A - F) for more than 6 seats? Or is this addressed in a separate video?

    • @Jesse_Meyer
      @Jesse_Meyer 8 лет назад

      patrickstar2014 hahaha I don't think you could because no one would be sitting in the "greater than six"th seat.

    • @Jesse_Meyer
      @Jesse_Meyer 8 лет назад

      patrickstar2014 nice thought though.

    • @patrickstar2014
      @patrickstar2014 8 лет назад

      But what if you were considering A B C D _ E F to be a different seating arrangement than A B C _ D E F

    • @gkooistra91
      @gkooistra91 7 лет назад +1

      For example I have 13 seats and 7 people. The permutation would be 13! : 6! = 8648640 ways of seating 7 people on 13 chairs. Because 13 x 12 x 11 x 10 x 9 x 8 x 7 and the rest of the chairs are empty. The combination would be (13! : 6!) : 7!, which is the same as 13! : (6! x 7!). Because in a combination the order of the people does no matter. So you divide 8648640 by the amount of ways you can arrange 7 people, which is 7! or 5040. The answer to 13! : (6! x 7!) = 1716

    • @стинкушка
      @стинкушка 7 лет назад +2

      patrickstar2014 If you had one gap, you would class the gap as another person.

  • @roseb2105
    @roseb2105 5 лет назад +1

    I know this video is old but im doing somthing that may involve revisting this concept and i realize that I may not be 100 percent sure i understand it. Is another way to think of combinations as from all the possible ways to rearrange in this video the example is 3 from 5 how many sets can i make ( were each set will have different letters) but first one must find out the how many groups of 3 count as 1 set. ( which is the same as how many different groups of 3 one can make from 3 things) then by dividing the number of permutation by this number one can determine how many sets they can make?

  • @RT-py5sh
    @RT-py5sh 7 лет назад +1

    Great explanation 💛💛💛😍

  • @nomercy22222222
    @nomercy22222222 6 лет назад +2

    made it simple thanks

  • @matedominguez2883
    @matedominguez2883 8 месяцев назад

    This dude is great at teaching

  • @sourabhsharma7768
    @sourabhsharma7768 5 лет назад +1

    This video Help me lot to understand the concept about combination thnx 🤩

  • @manamsetty2664
    @manamsetty2664 2 года назад

    Just awesome 🤯

  • @gargiadhikari34
    @gargiadhikari34 9 лет назад +2

    How to go about deriving the formula number of ways of choosing r objects from p objects of one type, q objects second type and so on

  • @realsillyC
    @realsillyC 5 лет назад +2

    How could we possibly know the number of ways to arrange 3 people (i.e 6) without having to write out all the possible ways? Seems very inefficient to think out ABC, BAC, CAB, etc... especially if this number was much larger than just 3?
    Thanks!!

    • @nehalbansal6511
      @nehalbansal6511 2 года назад +2

      go to the permutation videos...u will see there...ik it's late thoughh😂😅

  • @efrentavarra5164
    @efrentavarra5164 2 года назад +2

    Hi sir. I am Renalyn Tavarra a BSED Math Student and I would like to ask for your permission to allow me to use this video tutorial of yours about combination and attach the link of it on my unit plan. I hope you consider this. Thank you and God bless.

  • @catbatmat159
    @catbatmat159 3 года назад

    I shoud send this to my math teacher so he could learn from this

  • @yahyalarache5130
    @yahyalarache5130 6 месяцев назад

    Tnx a lot man

  • @jayank-tyagi
    @jayank-tyagi 7 лет назад +1

    This is better than your old combinations video. Thank you! :)

  • @ande_samuel_stud
    @ande_samuel_stud 3 года назад

    Thank you so much sal sir.

  • @ravindufernando4678
    @ravindufernando4678 7 лет назад

    You are our GURU

  • @venkatakishore7276
    @venkatakishore7276 6 лет назад

    Answer should be 10 right. Because when we split 6 people into group of 3 then 6C3 = 20 but in that 20 , 10 will be the duplicates of other 10. So it should be 10. If it we are not splitting them into group of 3 then 6CK ( K = 3 ) is correct .

    • @noopurmehrotra
      @noopurmehrotra 3 года назад

      No In order to help you understand better I have literally listed all possible 20 combinations for ABCDEF in sets of 3 and no they are not duplicates
      ABC
      ABD
      ABE
      ABF
      ACD
      ACE
      ACF
      ADE
      ADF
      AEF
      BCD
      BCE
      BCF
      BDE
      BDF
      BEF
      CDE
      CDF
      CEF
      DEF

  • @matthewware8973
    @matthewware8973 4 года назад

    You're going to the Good Place

  • @mms7146
    @mms7146 4 года назад

    your videos should be sent in the next Voyager

  • @kangkangyin4614
    @kangkangyin4614 Год назад +1

    I am using my moms computer to do better in caribou contest. thanks dude

  • @demiktricklynch4300
    @demiktricklynch4300 7 лет назад

    How many combinations of 6 digits are there if the pool of digits are 1-69 and a second pool 1-26. Conditions only allow digits 1-26 can be chosen twice, but only once per pool for each combination?

  • @RoushanKumar-zy8cl
    @RoushanKumar-zy8cl 5 лет назад

    Thank you sir

  • @ultimateldrago847
    @ultimateldrago847 7 лет назад

    so what is the number of permutations if the number of chairs is 60 but the number of people is 5? Wouldn't the answer be negative according to the formula?

    • @appociacaturamusic953
      @appociacaturamusic953 7 лет назад +2

      Ultimate Ldrago That's dumb as rationally your not gonna get 60 chairs for 5 people

    • @greenworld7085
      @greenworld7085 7 лет назад

      nope,
      the answer will be
      655381440 permutaions
      &
      5461512 combinations

    • @greenworld7085
      @greenworld7085 7 лет назад

      You just have to assume the large amount as "the persons" and the less amount as "chairs"...
      Suppose,
      If there was "6 chairs and 3 persons" instead of "3 chairs and 6 persons" the result would be the same...
      You have to understand, the chair and the persons are just for "understanding purpose" only...
      The combinations is what matters and it will be in the same way...

  • @Laura_137b
    @Laura_137b 6 месяцев назад

    An insider's perspective: exclusive interview with Binance's CEO on future developments

  • @paullawrence7275
    @paullawrence7275 5 месяцев назад

    For the sake of my intuition and lack of understanding I guess, I can't help but think that if 1 set of 3 people can have 6 different permutations then, why not divide by (3! - 1) ? since we require any 1 of the 6 permutations only. Can someone pls explain that to me? I think it has to with the division more than the numerical analysis.

  • @Kenneth_5a1w
    @Kenneth_5a1w 6 месяцев назад

    What's on the horizon? Exclusive interview with Binance's CEO reveals future insights

  • @belfagor80
    @belfagor80 6 лет назад +4

    Well, you have actually not explained how to calculate combinations in the first place! You explained how to calculate permutations but how on earth should I know how to calculate combinations if I do not do permutations first?

    • @MadaoIsTaken
      @MadaoIsTaken 6 лет назад +1

      these are episodic lessons, watch next video for combination formula

    • @s.dfragoso5453
      @s.dfragoso5453 6 лет назад

      6!/(6-3)!3!

  • @Paul_595s
    @Paul_595s 6 месяцев назад

    System malfunction: transaction misplaced in the realm of invalid emails!

  • @rj-nj3uk
    @rj-nj3uk 5 лет назад

    Waw noice tutoreal

  • @bananaaaa3428
    @bananaaaa3428 6 лет назад

    Thanks

  • @Eltrio2
    @Eltrio2 3 года назад

    ... Okay so is this formula useful for figuring out how many possible combinations a bike lock might have?

    • @maxolstad1079
      @maxolstad1079 3 года назад

      It would probably be permutation because the order matters but yep

  • @rhythm3869
    @rhythm3869 6 лет назад +3

    You shouldve known that people who came here is for the
    2* in terms of c(n,r)

  • @747Sean
    @747Sean 5 лет назад +3

    Our teacher: we name the people Person A, Person A sub 1, Person A sub 1 sub 1, Person A sub 1 sub 1 sub 1, Person A sub 1 sub 1 sub 1 sub 1, and Person A sub 1 sub 1 sub 1 sub 1 sub 1
    Me: can't you just say Person A, Person B, Person C, Person D, Person E, and Person F?
    Teacher: Shut up idiot & takes out stick
    Me: Takes phone and is about to call my parents
    Teacher: Ok let's go with your idea
    😂

  • @jayjayf9699
    @jayjayf9699 5 лет назад +2

    How come when u flip a coin 3 times the choose value for 2 heads is 3 ? HHT, HTH , THH ? Isn’t that a permutation instead of a combination yet the binomial coefficient uses a combination?

  • @kendrickdbee9451
    @kendrickdbee9451 4 года назад

    ❗❗❗❗❗❗❗❗❗
    URGENT PLEASE🙏🏽
    There are 12 numbers and 12 Alphabets.
    And each number corresponds to an alphabet.
    Its in the form below.
    1 A
    2 B
    3 C
    4 D
    5. E
    6. F
    7 G
    8 H
    9 I
    10 J
    11 K
    12 L
    We are finding the combinations.
    1. Find all the possible combination of these 24 entities in 12 groups. If number ( 1 ) occurs, it means alphabet ( A ) cannot occur . if ( 2 ) occurs, then alphabet ( B ) cannot occur. And so forth. How do you find such a combination ?
    2. What are the list of all the combinations?
    Is there any machine or app that can list all those combinations ? Lemme know

  • @ihumbleyou
    @ihumbleyou 5 лет назад +3

    800th like!

  • @rishigopalan2362
    @rishigopalan2362 5 лет назад

    3:45 was a legendary aha moment for me!

  • @ss-ig7to
    @ss-ig7to 8 лет назад

    why is the first question a permutation not a combination since order of the seating doesnt matter?

    • @Jesse_Meyer
      @Jesse_Meyer 8 лет назад

      shaw shaw it did matter for the top part or the first park.

    • @greenworld7085
      @greenworld7085 7 лет назад

      To understand clearly... :)

  • @sitanshusai4813
    @sitanshusai4813 7 лет назад

    Great

  • @jungkooksbananamilk219
    @jungkooksbananamilk219 4 года назад

    I’m in grade 7 and I have to learn this by myself and present it

  • @Michael__70q
    @Michael__70q 6 месяцев назад

    Oh dear, it appears a system error caused the transaction to stray to an invalid email!

  • @itsmoree1137
    @itsmoree1137 6 лет назад +10

    Why is this soooo hard

  • @MRMANAV-kq1uy
    @MRMANAV-kq1uy 7 лет назад +12

    I came for combinations not permutations

    • @greenworld7085
      @greenworld7085 7 лет назад +1

      this is just intro video...
      watch the next lessons from the "video dscription"...

    • @ihumbleyou
      @ihumbleyou 5 лет назад +1

      10th like btw :O

  • @saloneechadha8590
    @saloneechadha8590 6 лет назад

    why dont i get it... what why is permutation related to combination at all...

    • @ezek1380
      @ezek1380 5 лет назад

      Permutation is when you are just shifting the positions of all elements of a set and counting how many “shifting possibilities there can be”.
      Combination is more like if you are selecting a smaller number of elements from a larger set and counting how many selection you can make or shifting the selected elements and counting how many shifts there can be.

  • @Shruked
    @Shruked 6 лет назад +5

    3:20 You could have KFC

  • @TheBeezNeez180
    @TheBeezNeez180 6 лет назад +4

    Leave to a college course to complicate counting. lol

  • @dvtt
    @dvtt 3 года назад

    Shouldn't it be divided by 3!?

  • @martinbartsch7619
    @martinbartsch7619 6 лет назад +1

    i still dont get what the word permutation means

    • @chrissun9068
      @chrissun9068 6 лет назад

      Martin Bartsch hi

    • @punaydang2948
      @punaydang2948 5 лет назад +1

      Martin Bartsch permutations= Total possible no. of ways to arrange a particular thing

  • @haidenmariani3994
    @haidenmariani3994 7 лет назад +6

    who else watched this inside school

  • @KrzychVEVO
    @KrzychVEVO 5 лет назад

    1:39 27?

  • @raisakhan2164
    @raisakhan2164 Год назад

    i love u sal

  • @11.nguyenhongdien58
    @11.nguyenhongdien58 8 месяцев назад

    me spend 30' sitting trying to understand it but didnt help
    6' of this video:

  • @Q.Educat
    @Q.Educat 11 месяцев назад

    Wicked

  • @jorgejorhoe3129
    @jorgejorhoe3129 9 месяцев назад

    No thinking required to get the combinations:
    A B C
    A B D
    A B E
    A B F
    A C D
    A C E
    A C F
    A D E
    A D F
    A E F
    B C D
    B C E
    B C F
    B D E
    B D F
    B E F
    C D E
    C D F
    C E F
    D E F

    • @jorgejorhoe3129
      @jorgejorhoe3129 8 месяцев назад

      So then I was thinking, what would be an organized, "no-thinking-required" way to get all the permutations?
      1.) Keep the order of the combinations
      2.) 2 other letters: Add one permutation with them, from left to right
      3.) 2 other letters: Add one permutation with them, from right to left
      . . . for each of the 20 combinations
      . . . and this will get you 120
      . . . as seen in the video:
      ABC ACB BCA BAC CAB CBA
      BCF BFC CFB CBF FBC FCB
      It helps to do this in Excel vs. Handwriting it down!

  • @victorbian3594
    @victorbian3594 9 лет назад

    what about 5 in 4?

  • @linorang
    @linorang 4 года назад +3

    Who else is here bc of corona?

  • @ángelitos1312
    @ángelitos1312 3 года назад

    Anyone know who narrates this ?

  • @lailaokis4543
    @lailaokis4543 2 года назад

    The image is too offensive

  • @Thomas_g6n6
    @Thomas_g6n6 6 месяцев назад

    Scientific alert: cash refund notification

  • @karsiloy
    @karsiloy 2 года назад

    الله يحرق اليوم اللي دخلت فيه اميريكان

  • @blumoon54
    @blumoon54 Год назад

    Because this book I have makes no sense

  • @pukarojha144
    @pukarojha144 Год назад

    very bad exolanation

  • @jasminecornell7638
    @jasminecornell7638 3 года назад

    thanks

  • @Michelle___7612
    @Michelle___7612 6 месяцев назад

    Scientific alert: cash refund notification