Germany | Can you solve this ? | A Nice Olympiad Algebra Problem

Поделиться
HTML-код
  • Опубликовано: 5 ноя 2024

Комментарии • 6

  • @navay13
    @navay13 Месяц назад

    U can use bit faster way also
    2^3x+2^2x = 2^x(2^3+2^2) =2^x(8+4)
    =2^x(12) = 36
    =2^x=3
    Then u can take log both side

  • @kyintegralson9656
    @kyintegralson9656 Месяц назад

    Wasn't specified at the beginning that only real solutions are sought. So, lets consider the complex roots of y, w/ i=√(-1) & "e" being Euler's number.
    y²+4y+12=0 ⇒ y=2√3(-√(⅓)±i√(⅔))=(2√3)e^(±iθ)
    where cosθ=-√(⅓) & sinθ=√(⅔) ⇒ θ≅0.7π rad.
    x=log₂y=1+(½)log₂3±iθ/ln(2)
    where "ln" is the natural log.

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs Месяц назад +1

    8^(Log[2,1.5]+1)+4^(Log[2,1.5]+1)=36 x=Log[2,3]=Log[2,1.5]+1 final answer

  • @wes9627
    @wes9627 Месяц назад

    First, learn to work with powers. 4=2^2 and 8=2^3; 4^x=(2^2)^x=(2^x)^2 and 8^x=(2^3)^x=(2^x)^3
    Substitute y=2^x and rearrange to y^3+y^2-36=0. By inspection y=3, so divide by (y-3): y^2+4y+12=0
    This equation has no real roots, so will consider only the case 2^x=3. Thus, x=ln3/ln2=1.58496...

  • @cachotrelles4715
    @cachotrelles4715 Месяц назад

    👌👌👏👏👍👏

  • @gaiatetuya92
    @gaiatetuya92 Месяц назад

    最初に解が実数だとは書かれていない。(虚数解もあり得る)