Master Radical Math with This ONE Simple Technique!

Поделиться
HTML-код
  • Опубликовано: 15 ноя 2024

Комментарии • 14

  • @Quest3669
    @Quest3669 2 дня назад +1

    X^2= (3-√5)/2 & x= (√5-1)/2 hence x^17=(1597√5-3571)/2

  • @michaeledwards2251
    @michaeledwards2251 День назад

    My approach would be 17 = 10 + 5 + 2.
    x^10 = (2 ^ 5) / ( 3 + root(5) ) ^5
    x^2 = 2 / ( 3 + root(5) )
    x^5 =(2 ^ 2.5) / ( 3 + root(5) ) ^ 2.5
    x^17 =(2 ^ 8.5) / ( 3 + root(5) )^ 8.5 = 256 root(2) / (( 3 + root(5) ) ^ 8.5)
    Given 2 and 5 are irrational roots, I would use a calculator, to answer to a specified number of digits.

  • @RashmiRay-c1y
    @RashmiRay-c1y 2 дня назад +1

    x simplifies to x=1/2(√5-1). Thus, x^17 = 1/2(1597√5 -3571).

    • @gregevgeni1864
      @gregevgeni1864 2 дня назад

      (-3571+1597√5)/2

    • @RashmiRay-c1y
      @RashmiRay-c1y 2 дня назад +1

      @@gregevgeni1864 Thanks! I mistyped, forgetting to hit the "shift" key.

    • @gregevgeni1864
      @gregevgeni1864 2 дня назад

      (3+√5)(3-√5) = 3² -√5²= 9-5=4 (#)
      Then
      x¹⁰ = [2/(3+√5)]⁵ (1) => x² = 2/(3+√5)= (3-√5)/2 = [(-1+√5)/2]² =>
      x = (-1+√5)/2 (2).
      x⁶ =(x²)³ = [(3-√5)/2]³ (3)
      Then, due to (1), (2), (3) =>
      x¹⁷ = x¹⁰ • x⁶ • x = [2/(3+√5)]⁵•[(3-√5)/2]³ •(-1+√5)/2 = 32/(3+√5)⁵ • (3-√5)³/8 •(-1+√5)/2 = [4(3-√5)³/(3+√5)⁵]•(-1+√5)/2 =
      = {[(3-√5)(3+√5)(3-√5)³]/(3+√5)⁵}• (-1+√5)/2 = [(3-√5)/(3+√5)]⁴ •(-1+√5)/2
      = [(3-√5)²/(3+√5)((3-√5)]⁴•(-1+√5)/2
      = [(3-√5)²/4]⁴ •(-1+√5)/2 =
      =[(7-3√5)/2]⁴ •(-1+√5)/2
      =[(17656-7896√5)/16]•(-1+√5)/2
      = (4414-1974√5)/4 •(-1+√5)/2
      = .. = (-3571+1597√5)/2

  • @ManojkantSamal
    @ManojkantSamal 2 дня назад

    ^=read as to the power
    *=read as square root
    As per question
    X^10=32/(3+*5)^5=2^5/(3+*5)^5
    ={2/(3+*5)}^5
    (X^2)^5={2/(3+*5)}^5
    X^2=2/(3+*5)={2(3-*5)/(3+*5)(3-*5)}
    X^2={2(3-*5)/(9-5)}
    ={2(3-*5)/4}=(3-*5)/2.......EQN1
    Now explain
    (3-*5)/2=2(3-*5)/4
    =(6-2.*5)/4
    ={(*5)^2+1^2-(2×1×*5)}/2^2
    ={(*5-1)/2}^2
    So,
    X^2 ={(*5-1)/2}^2
    X=(*5-1)/2.........eqn2
    Take the square of eqn1
    (X^2)^2 ={(3-*5)/2}^2
    X^4={9+5-(2×3×*5)}/4
    =(14-6.*5)/4=2(7-3.*5)/4
    =(7 - 3.*5)/2........eqn3
    Take the fourth of eqn3
    (X^4)^4=(7-3.*5)^4/2^4
    X^16=(7-3.*5)^4/16
    Let's explain N
    N=(7-3.*5)^4
    Let
    Q=7, R=(-3.*5)
    Q^4=7^4=2401
    R^4=(-3.*5)^4=2025
    Q^2=7^2=49
    R^2=(-3.*5)^2=45
    Q×R=7×(-3.*5)=(-21.*5)
    6Q^2R^2=6×49×45=13230
    According to the formula
    (Q+R)^4=Q^4+R^4+6Q^2R^2+4QR(Q^2+R^2)
    SO,
    N=2401+2025 +13230+{(4×(-21.*5)}{49+45}
    N=4426+13230+{-84.*5(94)}
    N=17656-7896.*5
    N/D=(17656-7896.*5)/16
    =8(2207-987.*5)/16
    =(2207-987.*5)/2.........EQN4
    Eqn2 ×eqn4
    (X^16)×X={(2207-987.*5)/2}×{(*5-1)/2}
    N=(*5-1)(2207-987.*5)
    =2207.*5-4935-2207+987.*5
    =3194.*5-7142
    =2(1597.*5-3571)
    D=2×2=4
    N/D=2(1597.*5 - 3571)/4
    =(1597.*5 - 3571)/2
    Hence
    X^17=(1597.*5 - 3571)/2

    • @에스피-z2g
      @에스피-z2g День назад

      x^2=2/(3+rt5)
      x=(rt5-1)/2
      2x+1=rt5
      x^2+x-1=0
      x^2=1-x
      x^4=(1-x)^2=2-3x
      x^8=(2-3x)^2=
      4-12x+9x^2=
      13-21x
      x^16=(13-21x)^2=
      610-987x
      x^17=610x-987x^2=
      1597x-987=
      (1597rt5-3571)/2

  • @key_board_x
    @key_board_x 2 дня назад

    Other way….
    x¹⁰ = 32/(3 + √5)⁵
    x¹⁰ = [2/(3 + √5)]⁵
    (x²)⁵ = [2/(3 + √5)]⁵
    x² = 2/(3 + √5)
    x² = 2.(3 - √5)/[(3 + √5).(3 - √5)]
    x² = 2.(3 - √5)/[9 - 5]
    x² = (6 - 2√5)/4
    x² = [1 - 2√5 + 5]/4
    x² = [(1)² - 2.(1 * √5) + (√5)²]/2²
    x² = (1 - √5)²/2²
    x = ± (1 - √5)/2 → you know that: (1 - √5) < 0 → but recall the condition: x > 0
    x = - (1 - √5)/2
    x = (√5 - 1)/2
    x³ = x² * x → recall: x² = (6 - 2√5)/4
    x³ = [(6 - 2√5)/4] * x → recall: x = (√5 - 1)/2
    x³ = [(6 - 2√5)/4].(√5 - 1)/2
    x³ = [(3 - √5)/2].(√5 - 1)/2
    x³ = (3 - √5).(√5 - 1)/4
    x³ = (3√5 - 3 - 5 + √5)/4
    x³ = (4√5 - 8)/4
    x³ = √5 - 2
    (3 + √5)² = 9 + 6√5 + 5
    (3 + √5)² = 14 + 6√5
    (3 + √5)² = 2.(7 + 3√5)
    (3 + √5)⁴ = [(3 + √5)²]²
    (3 + √5)⁴ = [2.(7 + 3√5)]²
    (3 + √5)⁴ = 4.(7 + 3√5)²
    (3 + √5)⁴ = 4.(49 + 42√5 + 45)
    (3 + √5)⁴ = 4.(94 + 42√5)
    (3 + √5)⁴ = 8.(47 + 21√5)
    (3 + √5)⁵ = (3 + √5)⁴.(3 + √5)
    (3 + √5)⁵ = 8.(47 + 21√5).(3 + √5)
    (3 + √5)⁵ = 8.(141 + 47√5 + 63√5 + 105)
    (3 + √5)⁵ = 8.(246 + 110√5)
    (3 + √5)⁵ = 16.(123 + 55√5)
    x¹⁰ = 32/(3 + √5)⁵ → recall the previous result
    x¹⁰ = 32/[16.(123 + 55√5)]
    x¹⁰ = 2/(123 + 55√5)
    x¹⁰ = 2.(123 - 55√5)/[(123 + 55√5).(123 - 55√5)]
    x¹⁰ = 2.(123 - 55√5)/[123² - (55√5)²]
    x¹⁰ = 2.(123 - 55√5)/[15129 - 15125]
    x¹⁰ = 2.(123 - 55√5)/[4]
    x¹⁰ = (123 - 55√5)/2
    x²⁰ = (x¹⁰)²
    x²⁰ = [(123 - 55√5)/2]²
    x²⁰ = [123 - 55√5]²/4
    x²⁰ = [123² - 2.(123 * 55√5) + (55√5)²]/4
    x²⁰ = [15129 - 13530√5 + 15125]/4
    x²⁰ = [30254 - 13530√5]/4
    x²⁰ = (15127 - 6765√5)/2
    x¹⁷ = x²⁰/x³
    x¹⁷ = [(15127 - 6765√5)/2] / x³ → recall: x³ = √5 - 2
    x¹⁷ = [(15127 - 6765√5)/2] / (√5 - 2)
    x¹⁷ = [(15127 - 6765√5).(√5 + 2)/2] / [(√5 - 2).(√5 + 2)]
    x¹⁷ = [(15127 - 6765√5).(√5 + 2)/2] / [5 - 4]
    x¹⁷ = (15127 - 6765√5).(√5 + 2)/2
    x¹⁷ = (15127√5 + 30254 - 33825 - 13530√5)/2
    x¹⁷ = (1597√5 - 3571)/2

  • @潘博宇-k4l
    @潘博宇-k4l 2 дня назад

    E=X^17=[3815(5)^(1/2)-7097]/4