Chain rule for derivative (the box method, easy to understand)

Поделиться
HTML-код
  • Опубликовано: 2 фев 2025

Комментарии • 12

  • @bprpcalculusbasics
    @bprpcalculusbasics  Год назад +1

    More examples: ruclips.net/p/PLb2SZv7eAqplQsU11q2idrax4-jTiHvzh

  • @Shobold
    @Shobold Год назад +5

    Super simple and intuitive way to do it! Couldn't have done it without this video, thank you so much!

  • @shakeszka11
    @shakeszka11 Год назад +3

    thanks bro. u r the best

  • @keenan1414
    @keenan1414 Год назад +2

    Super helpful!!

  • @Tunmiseng
    @Tunmiseng Год назад +4

    W teacher really helped

  • @N-BTW
    @N-BTW Год назад +3

    Last answer to the final question is supposed to be 4sec^3xtanx right? Because i see the exponent of secx being 4 4:14

    • @aidangilmartin8716
      @aidangilmartin8716 Год назад

      I think that it was raised to the fourth and not to the third power because they were combining it with sec^1.

    • @N-BTW
      @N-BTW Год назад

      isn't it power of a power rule? so you'd multiply (sec^1)^3 = sec^1x3 = sec^3@@aidangilmartin8716

    • @aidangilmartin8716
      @aidangilmartin8716 Год назад

      @@N-BTWIt could be. I took it as secx^3 times secx^1 and then just added the exponents because they are being multiplied together but I could be wrong

  • @element1192
    @element1192 Год назад +2

    In summary: d/dx (f(g)) = f'(g) * g'

  • @TranquilSeaOfMath
    @TranquilSeaOfMath Год назад +2

    Nice video. What did you think of my latest video on chain rule using Leibniz notation?

  • @youssefcheffi6024
    @youssefcheffi6024 Год назад

    W