Linear Regression Practical Implementation In Hindi

Поделиться
HTML-код
  • Опубликовано: 1 дек 2024

Комментарии • 120

  • @SubhashKumar-ek2tm
    @SubhashKumar-ek2tm 5 месяцев назад +14

    fit_transform is used on training data to learn parameters and transform it, while transform is used on new or unseen data to apply previously learned transformations without re-learning the parameters.

  • @ParthPatel-db4tk
    @ParthPatel-db4tk Год назад +65

    fit_transform() is used on the training data to learn the scaling or transformation parameters and then applies the same transformation to the training data. transform() is used on new data (e.g. test data) to apply the same transformation that was learned on the training data.

    • @ritikkohad5045
      @ritikkohad5045 Год назад

      Thanks brother

    • @ayushpant8290
      @ayushpant8290 Год назад

      thanks bro

    • @kartiknampalliwar8603
      @kartiknampalliwar8603 8 месяцев назад

      i am unable to do first step i.e load_ boston is showing error can you please help me

    • @dhmahbub
      @dhmahbub 8 месяцев назад

      @@kartiknampalliwar8603 that data is not available in the new version. You can alternatively use "fetch_california_housing" and load it. Probably that is the similar sort of data.

    • @hiteshkotian6023
      @hiteshkotian6023 6 месяцев назад

      @@kartiknampalliwar8603 load_boston is no longer available use some other data like load_diabetes or something

  • @ujjvalbhardwaj9061
    @ujjvalbhardwaj9061 2 месяца назад +5

    00:01 Practical implementation of linear regression
    02:32 Explaining features and target in linear regression
    05:22 Preparing data for linear regression
    08:12 Understanding data normalization and standardization
    11:00 Implementing linear regression using steps
    13:08 Implementation of cross-validation for linear regression
    15:47 Using negative mean squared error for model optimization
    18:21 Verification is crucial for accurate predictions.
    20:43 Understanding the practical implementation of linear regression and its key steps
    23:11 Linear regression calculates the average change in one variable based on another

  • @luckythecutepie
    @luckythecutepie Год назад +3

    fit transform is used in train data set to predict the value(linear regression) test data set just to se our accuracy with the model.

  • @talhagalaria571
    @talhagalaria571 2 года назад +7

    fit transform and transform = we want to keep as a surprise is no longer unknown to our model and we will not get a good estimate of how our model is performing on the test (unseen) data which is the ultimate goal of building a model using machine learning algorithm.

    • @patelkdhawal
      @patelkdhawal 2 года назад +2

      Can you elaborate more. Please

  • @HasnainMazharRizvi
    @HasnainMazharRizvi Год назад +21

    playlist ke hisab se video dalo sir, theory aur practical implementation ke video mein bahot fark hai , much samjh nhi aya, r2 score, cross validation , xtrain ye sab kya hai theory mein to that he nhi ye sab.

  • @JagFi
    @JagFi Год назад +11

    Boston housing dataset has been removed from scikit-learn. Is there any way to load it as a bunch data??

    • @ausking3081
      @ausking3081 11 месяцев назад

      import pandas as pd
      import numpy as np
      data_url = "lib.stat.cmu.edu/datasets/boston"
      raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
      data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
      target = raw_df.values[1::2, 2]
      or install version 1.0.1
      pip install scikit-learn==1.0.1

  • @PRITAMHALDER-f7y
    @PRITAMHALDER-f7y 2 месяца назад +3

    scaler.transform(X_test) used to calculate mean and stander deviation on test data to be used future scaling .

  • @meetsaurabhtiwari
    @meetsaurabhtiwari 9 месяцев назад +2

    Sir , your effort is really wonderfull and is inspiration. please make a separate playlist for EDA and feature engineering , lakhs of aspirants are wait , please make it on serious note.

  • @Aman-yu4re
    @Aman-yu4re 6 месяцев назад +4

    Do I need to know sklearn before starting this playlist ?

  • @anujgupta328
    @anujgupta328 6 месяцев назад +3

    Gradient decent iss implementation mein kaise implement kaise hua?? Agar back end mein hua toh alpha value kaha diya?? @krish please explain

  • @code_with_somesh09
    @code_with_somesh09 Месяц назад +1

    `load_boston` has been removed from scikit-learn since version 1.2.
    The Boston housing prices dataset has an ethical problem: as
    investigated in [1], the authors of this dataset engineered a
    non-invertible variable "B" assuming that racial self-segregation had a
    positive impact on house prices [2]. Furthermore the goal of the
    research that led to the creation of this dataset was to study the
    impact of air quality but it did not give adequate demonstration of the
    validity of this assumption.

  • @avinashmirchandani8731
    @avinashmirchandani8731 2 года назад +4

    Please more videos on machine learning also practical video more
    Thankyou

  • @xyz3588
    @xyz3588 7 месяцев назад +4

    sir sklearn na dataset remove kar deya ha. dataset fetch nahi ho raha ha

  • @jaydodhiawala4117
    @jaydodhiawala4117 Год назад +4

    sklearn removed load_boston which dataset i can use to follow along?

    • @krishnaikhindi
      @krishnaikhindi  Год назад +5

      Fetchcaliforniadataset

    • @dnswm95
      @dnswm95 Год назад

      @@krishnaikhindican we use fetch_california_housing ??

    • @nikkhiliitbhu1677
      @nikkhiliitbhu1677 10 дней назад

      @@dnswm95 what the concultion of this question can anyone give ans?

  • @anilmurmu6675
    @anilmurmu6675 2 года назад +4

    What value of MSE , RMSE, R-square should be taken into consideration to come to conclusion that model build is accurate one? Is there any range of value for MSE, RMSE and R-square ?

    • @aftab6417
      @aftab6417 Год назад

      R2 to be gerater than .70 that is 70%

  • @pratishzaware1430
    @pratishzaware1430 2 года назад +1

    Nicely taught the algorithm..Thanks for making learning simple

  • @neeshantn9742
    @neeshantn9742 2 года назад +5

    Great video sir...just one concern...Why we are not checking VIF?

  • @alirathore6818
    @alirathore6818 2 года назад +2

    why are we using 'neg_mean_squared_error'
    can u please share link linear regression loss function video ?

  • @faheemsyed9481
    @faheemsyed9481 8 месяцев назад

    great job sir jee

  • @Gattu_g
    @Gattu_g 2 года назад

    Sir you explain soo good please continue making videos in hindi

  • @rohannagar3041
    @rohannagar3041 Месяц назад +1

    sir i can't understand anything,should i learn nummpy and pandas for this

  • @sumitsamanta7416
    @sumitsamanta7416 2 месяца назад

    idid not got the same graph in the end my varinence is more then (-10)--10 wht to do help

  • @Prachi_Gupta_zeal
    @Prachi_Gupta_zeal Год назад +1

    what is random state= 42 in that train test split command?

  • @roshanbhattad4493
    @roshanbhattad4493 3 месяца назад +7

    boston dataset is removed from sklearn

    • @debasmitabasu2106
      @debasmitabasu2106 Месяц назад +1

      you can go for california housing dataset for same work linear regression. it works.

  • @rakibulislamrabbi373
    @rakibulislamrabbi373 8 месяцев назад

    Sir the boston dataset is no more available in the scikit-learn datasets also can't load the boston dataset in juyter notebook can U please provide any solution for that?

    • @innocentgamer8670
      @innocentgamer8670 8 месяцев назад

      you can use the alternate dataset like california housing , or you can search and save the boston dataset , and use pd.read_csv() method to use that dataset

    • @AbhijeetDewangan-gr9sj
      @AbhijeetDewangan-gr9sj 8 месяцев назад

      please use " from sklearn.datasets import fetch_california_housing " alternative of Boston

  • @kishormagar3160
    @kishormagar3160 2 года назад +1

    Very good Sir

  • @satyamghule147
    @satyamghule147 Год назад +1

    i use the same model on 'fetch_california_housing' dataset and the mse i got is 0.5.

  • @yamrajoli3834
    @yamrajoli3834 9 месяцев назад

    I am seeing you videos just to similary apply another multivarite problem but when I got the displot(with kind=kde) it came similar but of the rang eof the 1e^9 so How can decrease the error should I use the tunning or what ?

  • @visshalgupta
    @visshalgupta Год назад

    Sir i didnt able to understand what is y the dependent variable . I mean which column is gettimg predicted ?

  • @moghalkarishma2378
    @moghalkarishma2378 Год назад

    here linear regression doing but why taken independent features more than 1 feature can anybody tell me

  • @sauravsahay8803
    @sauravsahay8803 7 месяцев назад

    How is it that you are predicting on x_test but calling your y_test as truth value?

  • @sowmyavvasu84
    @sowmyavvasu84 Год назад

    Sir i have build the model in linear regression and performance of evaluation metrics are also done. Now additional I want to add one more new row(instance) and find the performance of it how to do can you guide me pl. How to check the performance particularly that single row.

    • @filmybeats4827
      @filmybeats4827 Год назад

      Bro I couldn't understand this to that level how can I understand these concepts as sir is directly implemented it so

  • @NavyaTrilokD
    @NavyaTrilokD 6 месяцев назад

    But what are we predicting here? Can someone explain please..what does the values in "reg_pred" tell us? what is the difference between values in target features array and "reg_pred" values?

    • @NavyaTrilokD
      @NavyaTrilokD 6 месяцев назад

      so we are predicting the output feature house pricing...for the independent features in x_test, dependent feature or actual values are in y_test. After applying linear regression, predicted values are in reg_pred. In linear regression we find the difference between actual values and predicted values, that is the error. MSE is that error here.

  • @shashankmokashi1406
    @shashankmokashi1406 2 года назад

    Good video sir.

  • @brahmadevrai4369
    @brahmadevrai4369 2 года назад

    Sir when new batch start for data science?

  • @yadnyeshkhotre2001
    @yadnyeshkhotre2001 Год назад +1

    boston dataset is been reomved from the kcikit liberary

  • @Sachin-xj1oq
    @Sachin-xj1oq 6 месяцев назад

    Can anyone please explain displot discussed in this video?

  • @TuneTube312
    @TuneTube312 5 месяцев назад

    Thank you sir 🙏

  • @KushagraBhardwaj-f5j
    @KushagraBhardwaj-f5j 6 месяцев назад

    where is the theory playlist? can someone please attach the link in the reply to this comment

  • @vikasvachheta7135
    @vikasvachheta7135 Год назад

    *** please create EDA and Feature engineering playlist in HINDI ***

  • @BEEAnkitgupta
    @BEEAnkitgupta Год назад

    sir if my accuracy_score is 0.85 then my predication model is good or bad?

  • @MnB_music
    @MnB_music 2 года назад

    Simply amazing ❤

  • @manchalamani9475
    @manchalamani9475 Год назад

    Sir this can be explain in English language some what difficult to understand Hindi

  • @datasciencegyan5145
    @datasciencegyan5145 2 года назад

    Krish ap kon sa video software use kerto ho recording k liye

  • @nileshnaik3111
    @nileshnaik3111 2 года назад

    nice video sir

  • @jatinjoshi1830
    @jatinjoshi1830 Год назад

    Thank You

  • @nileshkshatriya5827
    @nileshkshatriya5827 2 года назад

    Please keep uploading videos in hindi

  • @Yash_Patil.
    @Yash_Patil. Год назад

    bcoz we evaluate our model on test data set

  • @swapnilkulat5990
    @swapnilkulat5990 Год назад

    The Boston datasathas been removed from sklearn....

  • @ajaykushwaha-je6mw
    @ajaykushwaha-je6mw 2 года назад

    Sir please l1 and L2 k liye bhi video banaiye

  • @ajaykushwaha4233
    @ajaykushwaha4233 2 года назад

    How to know model is overfitted or stable model.

    • @entertainmenthub7700
      @entertainmenthub7700 2 года назад

      if it perfectly fits to the traning data in simple meanings if it remember the data instead of learning it overfits

  • @harshsrivastava1662
    @harshsrivastava1662 Год назад

    kind='kde' not showing that graph

  • @Gangstersongs125
    @Gangstersongs125 7 месяцев назад

    Sir in this where us accuracy

  • @AmitSharma-oh5uw
    @AmitSharma-oh5uw 9 месяцев назад

    sir ap dataset bhi dal diya kro.
    load_boston to ho ni rha hai hmara.
    kaise kre ab

    • @niharikakhanna3585
      @niharikakhanna3585 9 месяцев назад

      same problem, kuch solution mila?

    • @AmitSharma-oh5uw
      @AmitSharma-oh5uw 9 месяцев назад

      @kakhanna3585 hi niharika are you a data science student.
      pehle mene socha inke 38 videos hi hai machine learning ke.
      and me bhut jldi complete kr lunga.
      but me 2 video se age hi bdha hi ni abhi tk.
      ye beginers jaise ni pdha rhe hai. and mujhe ek ek chiz likhna pd rha hai, ki sir kya bol rhe hai video me.
      and wo atleast definations bhi likhwate to smjne me easy hota.
      it's difficult to understand.
      kya apko koi aur playlist pta hai. jisse jo machine learning ke liye ho.

    • @piyushff3258
      @piyushff3258 4 месяца назад

      use fetch_california_housing class alternative of boston

  • @tusharsalunkhe7916
    @tusharsalunkhe7916 Год назад

    Why Y_train is not standardized? Please answer

    • @satyamghule147
      @satyamghule147 Год назад +1

      Standardization is typically applied to the feature variables (X_train) rather than the target variable (Y_train) in machine learning.

  • @abhinavbm3338
    @abhinavbm3338 Год назад

    what is score?

  • @paraguchbagle6413
    @paraguchbagle6413 7 месяцев назад +1

    bouncer ho gya ye video

  • @lakshyajain7435
    @lakshyajain7435 Год назад +2

    Kuch samajh nahi aa raha...

  • @dheerajgupta3805
    @dheerajgupta3805 Год назад

    subscribed

  • @toufique3390
    @toufique3390 5 месяцев назад +2

    too complex🙁

  • @m.laxminarayanreddy
    @m.laxminarayanreddy 2 года назад

    i got a score of "0.017460452225004253" why i got low score?

  • @B.D.M1999
    @B.D.M1999 9 месяцев назад

    load boston has been removed

    • @AbhijeetDewangan-gr9sj
      @AbhijeetDewangan-gr9sj 8 месяцев назад

      please use " from sklearn.datasets import fetch_california_housing " alternative of Boston

    • @MehtabAfzal-i3t
      @MehtabAfzal-i3t 8 месяцев назад

      Bhai fetch wali BHI Nahi Chal rahi

  • @__________________________6910
    @__________________________6910 2 года назад

    Noice

  • @hannahvm8044
    @hannahvm8044 Год назад

    Plz do videos in English🥲

    • @adila8128
      @adila8128 Год назад

      If you're looking for videos in English you can refer to his other channel. You will find all the videos in the English language.

  • @HoneySingh-cu3pw
    @HoneySingh-cu3pw 9 месяцев назад

    Esi video bnaya naa kro jo kisi k leptop m work naa kre kya jya oerte ho smj nhi atta padhne bethq toh sara dinak khrab ho gya kuch hua nhi

  • @sonalikamble5929
    @sonalikamble5929 5 месяцев назад

    Great thank you

  • @self_official
    @self_official Год назад

    sir aap JSPM Tathwade ke student hai kya

  • @trojanhorse8278
    @trojanhorse8278 Год назад

    youtube shanel

  • @MrPravinsoni
    @MrPravinsoni Год назад +5

    Boston housing dataset has been removed from scikit-learn. Is there any way to load it as a bunch data??

    • @ubarbde
      @ubarbde 9 месяцев назад

      from sklearn.datasets import fetch_california_housing
      housing = fetch_california_housing()

    • @RoyParihar-p4l
      @RoyParihar-p4l 6 месяцев назад

      from sklearn.datasets import fetch_california_housing use this