This question frightened 300K+ examinees!

Поделиться
HTML-код
  • Опубликовано: 8 янв 2025
  • How do you solve this equation? Use this fanatic trick!

Комментарии • 10

  • @roberttelarket4934
    @roberttelarket4934 3 дня назад +5

    Nothing frightening! Easy peasy!

  • @moniqueboyke5879
    @moniqueboyke5879 3 дня назад

    Great video

  • @hermannschuster1358
    @hermannschuster1358 3 дня назад

    Was soll der Begriff 'Einschaltungszeichen?

  • @geoffsaemann4241
    @geoffsaemann4241 День назад

    x^4+(100/(x^4+1))=19
    Multiply all terms by x^4+1:
    x^4(x^4+1)+100=19(x^4+1)
    Distribute:
    x^8+x^4+100=19x^4+19
    Combine like terms:
    x^8=18x^4-81
    Take fourth root of all terms:
    x^2=2.06x-3
    Simplify:
    x^2-2.06x+3=0
    Apply quadratic formula:
    x=1.03+1.39i, 1.03-1.39i
    I’m not seeing what I did wrong

    • @tholod
      @tholod 17 часов назад

      Your mistake is on the step where you take the fourth root, root is not linear so root(a+b) != root(a) + root(b)
      I am not sure this is a good thing to use the fourth root, a better way is to go back to your x⁸ = 18x⁴ -81, take all members on the same side : x⁸-18x⁴+81 = 0
      Then you can rewrite this in the form of (a - b)² : (x⁴)² - 2 * 9 * x⁴ + 9² = 0 (x⁴ - 9)² = 0
      And the solutions come easily by solving x⁴ = 9 x² = 3 or -3 x = sqrt(3) or -sqrt(3) or sqrt(3)i or -sqrt(3)i (or only the two first if you solve this for real numbers)

  • @pedrojose392
    @pedrojose392 День назад

    x^4+1+100/(x^4+1)=20
    u=x^4+1==>u^2-20x+100=0
    (u-10)=0 ==> u=10
    So x^4=9
    x=sqr(3) or x=-sqr(3) or x=sqr(3)*i or x=-sqr(3)*i all with multiplicity 2.
    Easy question.

  • @lloy._.d
    @lloy._.d День назад

    x = 1,3

  • @SidneiMV
    @SidneiMV 3 дня назад +1

    x⁴ + 1 = u
    u + 100/u = 20
    u² - 20u + 100 = 0
    u = 10
    x⁴ + 1 = 10
    x⁴ = 9
    x² = ± 3
    *x = ± √3* ∨ *x = ± i√3*

    • @SidneiMV
      @SidneiMV 3 дня назад +1

      another way
      x⁴ + 1 + 100/(x⁴ + 1) = 20
      (x⁴ + 1)/10 + 10/(x⁴ + 1) = 2
      (x⁴ + 1)/10 = u
      u + 1/u = 2
      u² - 2u + 1 = 0
      (u - 1)² = 0 => u = 1
      (x⁴ + 1)/10 = 1 => x⁴ = 9
      *x = ± √3* ∨ *x = ± i√3*