Japanese | Can you solve this? | Nice Square Root Problem

Поделиться
HTML-код
  • Опубликовано: 5 ноя 2024

Комментарии • 15

  • @에스피-z2g
    @에스피-z2g День назад +2

    rt(x+2)=7-rt(x-5)
    x+2=49-14rt(x-5)+x-5
    14rt(x-5)=42
    rt(x-5)=3
    x-5=9
    x=14

  • @ChavoMysterio
    @ChavoMysterio 3 дня назад +2

    (x-5)^½+(x+2)^½=7
    7-(x+2)^½=(x-5)^½
    7-(x+2)^½=(x+2-7)^½
    Let y=x+2
    7-y^½=(y-7)^½
    Let z=y^½
    7-z=(z²-7)^½
    z²-14z+49=z²-7
    49-14z=-7
    -14z=-56
    z=4
    y^½=4
    y=16
    x+2=16
    x=14 ❤

  • @sebastienlecmpte3419
    @sebastienlecmpte3419 20 часов назад

    Square both sides:
    x-5+x+2+2√(x²-3x-10)=49
    2√(x²-3x-10)=-2x+52
    √(x²-3x-10)=-x+26
    x²-3x-10=x²-52x+676
    49x=686
    x=14

  • @michaeledwards2251
    @michaeledwards2251 2 дня назад

    I suspect the Japanese are playing a trick on everyone.
    The result, RHS, is an integer 7.
    The LHS is the sum of 2 roots. If the roots are irrational, the sum will be also irrational.
    The possible integer sums adding up to 7 are
    (a) 1,6
    (b) 2,5
    (c) 3, 4
    (d) 4, 3
    (e) 5, 2
    (f) 6, 1
    Considering only the 1st term of the LHS, the possible values of X are
    (a) root(X - 5) = 1, squared = 1, giving X = 6.
    (b) root(X - 5) = 2, squared = 4, giving X = 9.
    (c) root(X - 5) = 3, squared = 9, giving X = 14.
    (d) root(X - 5) =4, squared = 16, giving X = 21.
    (e) root(X - 5) =5, squared =25, giving X = 30.
    (f) root(X - 5) = 6, squared =36, giving X = 41.
    Considering the 2nd term of the RHS, the valid value of X is
    (a) root(6 + 2) which is root(8) = 2 root(2) which is irrational
    (b) root(9 +2) which is root(11) which is irrational
    (c) root(14+2) which is root(16) = 4, an integer value.
    (d) root(21+2) which is root(23) which is irrational
    (e) root(30+2) which is root(32) = 4 root(2) which is irrational
    (f) root(41+2) which is root(43) which is irrational
    Only X =14 has integer roots, 3+4 = 7, the solution is X = 14.
    With the help of an abacus the possibilities can be explored in seconds.
    I feel sure the solution I have outlined is a clumsy version of the numerical tricks an abacus user has available.

  • @gillesdelbreil5414
    @gillesdelbreil5414 2 дня назад

    Thanks for thi video. From a rigorous point of view you may have precised the conditions of existence for x. Here x>=5, x

  • @stefanedgecombe8628
    @stefanedgecombe8628 4 дня назад +2

    Why did he make it so complicated

    • @aladdintw
      @aladdintw 19 часов назад

      I don’t know, in Taiwan such a long writing means that you do math too little

  • @turkayay341
    @turkayay341 День назад

    I solved in 10 seconds, X=14

  • @ЛюдмилаУстименко
    @ЛюдмилаУстименко 3 дня назад

    14,8

  • @prollysine
    @prollysine 2 дня назад

    let u=x-5 , --> x=u+5 , Vu+V(u+7)=7 , (V(u+7))^2=(7-Vu)^2 , u+7=49-14Vu+u , / -u , 14Vu=49-7 , 14Vu=42 , Vu=3 , u=9 ,
    recall , x=u+5 , x=9+5 , x=14 , test , V(14-5)+V(14+2)=V9+V16 , --> 3+4=7 , OK ,

  • @dardoburgos3179
    @dardoburgos3179 3 дня назад

    X= 14. No necesito tu explicación, ya lo aprendí en la escuela pública.

  • @ЛюдмилаУстименко
    @ЛюдмилаУстименко 3 дня назад

    14,8