Working with Logarithmic Expressions

Поделиться
HTML-код
  • Опубликовано: 10 янв 2025

Комментарии •

  • @Skank_and_Gutterboy
    @Skank_and_Gutterboy 2 года назад +3

    Great problem! The approach I took was compare each log equation to establish relationships: a^6=b^4, b^4=c^3, and c^3=a^6. Then I used the change of base formula so that log(c)base(ab) = log(c)/log(ab). I then wrote that expression converting a and b so that the entire expression is in terms of c: log(c)/log(ab) = log(c)/log(c^(1/2)*c^(3/4)) = log(c)/[1/2*log(c) + 3/4*log(c)]. Then you can factor out log(c) in the denominator, log(c) then completely cancels out of the expression, and you can then directly calculate the expression: log(c)/[log(c)*(1/2 + 3/4)] = 1/(1/2 + 3/4) = 1/(5/4) = 4/5.

    • @-wx-78-
      @-wx-78- 2 года назад +1

      After calculating that ab = c**⁵⁄4 you can use log_xⁿ(y) = 1⁄ₙ·log_x(y):
      log_ab(c) = log_c**⁵⁄4(c) = ⅘·log_c(c) = ⅘.

  • @MichaelJamesActually
    @MichaelJamesActually 2 года назад +3

    I took the most roundabout method you could think. turned the second eqn into 4log(ab/a) and then solved for log(c)/log(ab). after 3 pages, it came to the right answer lol.

  • @zhugzhuangzury
    @zhugzhuangzury 2 года назад +4

    This is called pure enjoyment.... Btw can you do like previous years maths olympiads algebra or number theory or combinatorics problems... I would love to watch those sir...

  • @michaelempeigne3519
    @michaelempeigne3519 2 года назад

    6 log a = 4 log b = 3 log c = m
    6 log a = m
    a = 10^(m / 6 )
    similarly, 4 log b = m
    b = 10^( m / 4 )
    3 log c = m
    c = 10^( m / 3 )
    ab = 10^( m / 6 ) * 10^( m / 4 )
    ab = 10^( m / 6 + m / 4 ) = 10^( 5m / 12 )
    that means log_10^(5m / 12 ) ( 10^(m / 3 ) )
    here is an interesting property of logs : log_(a^n) ( b^k ) = ( k / n ) log_a ( b )
    by this property, we get : [ (m / 3 ) / ( 5m / 12 ) ] * log_10 ( 10 )
    = (1 / 3 ) * ( 12 / 5 )
    = 4 / 5

  • @Jha-s-kitchen
    @Jha-s-kitchen 2 года назад +3

    Wow logs are back 🥳🥳.
    This was an innovative question!

  • @morteza3268
    @morteza3268 2 года назад +4

    At first we know that;
    6log[ab](a)=4log[ab](b)=3log[ab](c)=M
    Therefore, we add the two equalities on the left;
    Log[ab](b)+log[ab](a)=M(1/6+1/4)
    Log[ab](ab)=1=M(10/24) M=12/5
    On the other hand;
    Log[ab](c)=M/3=4/5
    THE END

    • @edtx9324
      @edtx9324 2 года назад

      No , in the question the given base is 10 , not ab . You are doing this by assuming that the base is ab .

    • @morteza3268
      @morteza3268 2 года назад

      @@edtx9324 Does not matter
      6log(a)/log(ab)=4log(b)/log(ab)=3log(c)/log(ab)
      They can be simplified:

  • @isaacdagwom2464
    @isaacdagwom2464 2 года назад +2

    Wow. This is pure intelligence 👏,I understood everything from beginning to the end.

  • @abhimanyusingh9489
    @abhimanyusingh9489 2 года назад

    My method was :-
    Since , 6 log a = 4 log b = 3 log c , a⁶=b⁴=c³.
    a⁶=c³ -> a²=c
    b⁴=a⁶ -> b=(a)^3/2
    So,ab=(a)^5/2
    log c to the base (ab)= log a² to the base ((a)^5/2),
    Using the logarithmic identities,
    log a² to the base ((a)^5/2) = 4/5 × log a to the base a = 4/5×1 = 0.8

  • @tontonbeber4555
    @tontonbeber4555 2 года назад +3

    pfff ... log(ab)c = log c / log(ab) = log c / (log a + log b)
    log a = 1/2 log c and log b = 3/4 log c
    So answer is 1 / (1/2+3/4) = 4/5

  • @BlackwoodCompany
    @BlackwoodCompany 2 года назад +2

    The second method was much smarter.

  • @coreyyanofsky
    @coreyyanofsky 2 года назад

    log a + log b = (3/6) log c + (3/4) log c
    (4/5) log ab = log c
    (ab)^(4/5) = c
    therefore the sought-after quantity is 4/5

  • @imonkalyanbarua
    @imonkalyanbarua 2 года назад +1

    I tried it this way:
    So we are given 6loga = 4logb = 3logc,
    If we break them up individually we have:
    6loga = 3logc => a^6 = c^3 ...(1)
    Similarly, 4logb = 3logc => b^4 = c^3 ...(2)
    If we raise (2) to the power of 3/2 we get:
    b^6 = c^(9/2) ...(3)
    If we multiply (1) & (3) we get:
    (ab)^6 = c^(3 + 3/2) = c^(9/2)
    => 6log(ab) to the base (ab) = (9/2) × logc to the base (ab)
    => 6 = (9/2) × logc to the base (ab)
    => logc to the base (ab) = 12/9 = 4/3#
    I don't know where did I go wrong here? Please guide me. Thank you. 😇🙏

    • @pratham_kun
      @pratham_kun 2 года назад +1

      When multiplying (1) and (3)
      It should be
      3^(3+9/2)=3^(15/2)......

    • @imonkalyanbarua
      @imonkalyanbarua 2 года назад +1

      @@pratham_kun oh right! I didn't notice it... Thank you so much! I have been prone to silly mistakes since my childhood which has often cost me marks in exams.. it reminded me of the reprimands i would often receive from my teachers in my younger days.. 😂😂😂 thanks again friend! 💐😇

    • @pratham_kun
      @pratham_kun 2 года назад +1

      @@imonkalyanbarua
      🤞🤞
      😂Fun fact: Silly mistakes is in my genetics. In my previous examination, i literally wrote 7-6 = -1
      💀💀

    • @imonkalyanbarua
      @imonkalyanbarua 2 года назад +1

      @@pratham_kun 😂😂😂 keep it up! 🤪👍👍

  • @winnewFirst
    @winnewFirst 2 года назад

    = log c / log(ab)
    = log c / (log a + log b)
    Now represent denominator in log c. That's it.

  • @田村博志-z8y
    @田村博志-z8y 2 года назад

    Setting
    6 log a = 4 log b = 3 log c = 12k
    we have log a = 2k, log b = 3k, log c = 4k.
    We note that a = b = c = 1 are not suitable.
    Then we have k is not zero and
    ( log c )/( log a + log b ) = ( 4k )/( 2k + 3k ) = 4/5

  • @rob876
    @rob876 2 года назад

    = log c / (log a + log b)
    = 1/(log a / log c + log b / log c)
    = 1/(1/2 + 3/4)
    = 1/(5/4)
    = 4/5

  • @jermas8226
    @jermas8226 Год назад

    Third method:
    As a.b=(10^x/6).(10^x/4)=10^(5x/12)
    Log ab=5x/12
    If log c base ab= y
    c=ab^y that means
    x/3=(5x/12)^y taking the log base ab both sides
    Log c= log ab^y that means y= log c/ log ab
    Y = (x/3)/(5x/12)= 4/5 and that is the answer 😃

  • @amoledzeppelin
    @amoledzeppelin 2 года назад

    Before watching the video, I solved it in my mind:
    log c / log ab = log c / (log a + log b)
    3log c = 6log a => log a = 0.5log c
    3log c = 4log b => log b = 0.75log c
    log c / log ab = log c / 1.25 log c = 0.8

  • @carlosvaccaro3544
    @carlosvaccaro3544 2 года назад

    1st method seems shorter if you proceed logc a = log a / log c

  • @danilobondi3191
    @danilobondi3191 2 года назад

    My solution went as follows:
    Let y = 6loga=4logb=3logc and x=log_ab(c)
    c=(ab)^x
    log(c)=x log (ab) = x(log a + log b)
    6 log(c) = 2y=
    =x(6log a + 3/2*4log b)
    2y=x(y+3/2y)=5/2xy
    Therefore x=5/4
    If a,b,c are not all equal to 1

  • @dmtri1974
    @dmtri1974 2 года назад

    A Nice one!!! Just one remark....What if ab=1? Then log_1(c) is not defined....

  • @エラベネズ
    @エラベネズ 2 года назад

    just think about the ratio of (log a):(log b):(log c), it is 2:3:4 obviously, and think about (ln e)/(ln a + ln b).

  • @monujhembrom1206
    @monujhembrom1206 2 года назад

    Bring more videos of log really very helpful 🙏

    • @SyberMath
      @SyberMath  2 года назад

      Good to hear! I love logs, too and I made quite a few log problems (my favorite pastime). Two of them are really cool and will come up in the future!

  • @مهدیمطلوبی-ض8غ
    @مهدیمطلوبی-ض8غ 2 года назад

    We can go with ratio and Exponential

  • @JSSTyger
    @JSSTyger 2 года назад

    I tried it and I came up with (ab)^(1/2) = c and thus the answer is 1/2.

  • @cube7353
    @cube7353 2 года назад +1

    Change of Base rule!!!

  • @p12psicop
    @p12psicop 2 года назад

    Why don't you ever start with the second method?

    • @SyberMath
      @SyberMath  2 года назад

      Check out the upcoming videos! 😉

  • @meedonexus
    @meedonexus 2 года назад

    Thank you

  • @nicogehren6566
    @nicogehren6566 2 года назад

    very good question

  • @advaykumar9726
    @advaykumar9726 2 года назад +2

    4/5

  • @SuperYoonHo
    @SuperYoonHo 2 года назад +1

    My method 2nd

  • @pranavamali05
    @pranavamali05 2 года назад

    thnx

  • @vuqou2664
    @vuqou2664 2 года назад

    6/10/2022

  • @thelife8836
    @thelife8836 2 года назад +1

    👍👍

  • @tomding7505
    @tomding7505 2 года назад

    complicated

  • @barakathaider6333
    @barakathaider6333 2 года назад

    👍

  • @mathswan1607
    @mathswan1607 2 года назад

    4/5