Boosting Retail Margins: Price Optimization Strategies with Machine Learning

Поделиться
HTML-код
  • Опубликовано: 21 дек 2024

Комментарии • 13

  • @WojciechDynda
    @WojciechDynda 3 месяца назад +1

    Nice introduction, any more details about tehcnical aspects of that case, instructions, tips on how to implement this kind of solution?

  • @brandoncharles5413
    @brandoncharles5413 2 года назад

    So would profit be an input feature of the bayesian optimiser? As in, you multiply the predicted sales by the gross margin and use that as feature to optimise the price.

  • @gamilfarea4276
    @gamilfarea4276 2 года назад +3

    Thank you for sharing. What was the name of the optimizer?

    • @naveenvenk
      @naveenvenk 2 года назад +1

      did you get the optimizer name ?
      @18:50

  • @juiguram7177
    @juiguram7177 Год назад

    what is the type of optimizer used , the audio is not very clear

  • @matiastorres392
    @matiastorres392 3 года назад +2

    hi ¡ , nice presentation, but i coudnt catch whats is the variable that you predict with the model. Its just the demand for the nexts week?

    • @khanhtruong3254
      @khanhtruong3254 2 года назад +3

      I think the model predicts the sales (the demand), i.e. how many units will be sold. And the price is in the features (independent variables) when building the model to predict the sales. By doing so, we can arbitrarily change the price from a to b to see how the sales vary in the price range.

  • @jimbocho660
    @jimbocho660 3 года назад +3

    A very nice presentation. Interesting and informative. Thank you.

  • @harshaneekhra3553
    @harshaneekhra3553 2 года назад +2

    nicely explained!

  • @sahilkakkar5628
    @sahilkakkar5628 2 года назад

    Very insightful video, thank you

  • @babakheydari9689
    @babakheydari9689 10 месяцев назад

    great and informative

  • @hsoley
    @hsoley 2 года назад

    Very nice and informative!