Congruence - Arithmétique - Spé maths - 3 questions pour s'entrainer sur les congruences - IMPORTANT

Поделиться
HTML-код
  • Опубликовано: 24 янв 2025

Комментарии • 92

  • @ahlambekraoui6476
    @ahlambekraoui6476 4 года назад +6

    Mais y'a personne autre que vous qui m'a sauvé durant ce confinement et aidé à comprendre les maths ... je ne sais pas comment vous remercier... l'arithmétique avait toujours été un monde infranchissable pour moi et je n'aurais jamais cru qu'un jour je la comprendrai assez facilement 😭😭 vous êtes un vrai, un authentique génie monsieur

  • @Venus-sj1oh
    @Venus-sj1oh 2 года назад +1

    Merci beaucoup vous nous aidez beaucoup !

  • @vandiane4741
    @vandiane4741 2 года назад

    J'ai passé toute ma journée sur la chaine 😀😀😆merci

  • @selinelinda4494
    @selinelinda4494 3 года назад

    Merci infiniment , vous êtes toujours le meilleur !!

  • @julienfb4693
    @julienfb4693 8 лет назад +1

    Excellent nous n'avons pas encore abordé ce chapitre mais c'est une très bonne introduction ! Merci beaucoup !

    • @jaicomprisMaths
      @jaicomprisMaths  8 лет назад +2

      merci !!!! le cours sur les congruences arrive bientôt

  • @grantolosi
    @grantolosi 7 лет назад +2

    Merci beaucoup pour detailler la division éucledienne dans le cas de -39, avec ça, like et abonné!

  • @Benescoli
    @Benescoli 6 лет назад +2

    Merci beaucoup pour vos cours, continuez ainsi ☺

  • @thomaskeomani9481
    @thomaskeomani9481 6 лет назад +1

    je vous aime merci mille fois !!!!!!

    • @jaicomprisMaths
      @jaicomprisMaths  6 лет назад

      merci à toi et plein de réussite pour 2019
      😇😇😇😇www.jaicompris.com/

  • @Grizlou
    @Grizlou 3 года назад

    Merci Monsieur

  • @codecreatif13
    @codecreatif13 2 года назад +1

    J’ai pas compris pourquoi pour la question 2, on ne prend pas les nombres négatifs, comme -6, ce qui ferait -6-27=33=3x11

    • @codecreatif13
      @codecreatif13 2 года назад

      Merci si quelqu’un répond 🙃

    • @jaicomprisMaths
      @jaicomprisMaths  2 года назад +1

      @@codecreatif13 on aurait pu travailler avec des négatifs, mais -6 ou 5 modulo 11 c'est la même chose donc on a choisi de travailler avec 5

    • @codecreatif13
      @codecreatif13 2 года назад

      @@jaicomprisMaths désolé, j’ai pas fait maths expertes j’suis en train de découvrir les congruences 😅

    • @codecreatif13
      @codecreatif13 2 года назад

      @@jaicomprisMaths mais je ne comprends pas en quoi c’est la même chose, pour -6-27=-3x11 et pour 5-27=-2x11

    • @Frank-kx4hc
      @Frank-kx4hc Год назад

      Ah que ça colle !

  • @eloindongo8845
    @eloindongo8845 3 года назад

    Es qu'on utilisera toujours la 3eme condition pour résoudre un tel système dans z

  • @bryanchen9112
    @bryanchen9112 6 лет назад +7

    Merci beaucoup ! J'ai enfin compris les congruencess, rololoo xD, trop perdu et ayant perdu espoir dans la spé maths :(

    • @jaicomprisMaths
      @jaicomprisMaths  6 лет назад +1

      cool , pense à aller sur le site , y a tout le cours
      😇😇😇😇
      jaicompris.com/index.php

    • @rykernolan3590
      @rykernolan3590 3 года назад

      I know it's kinda randomly asking but do anybody know a good place to stream newly released movies online ?

    • @kianpierce3912
      @kianpierce3912 3 года назад

      @Ryker Nolan I would suggest flixzone. Just search on google for it :)

    • @alaricsylas6029
      @alaricsylas6029 3 года назад

      @Ryker Nolan I use FlixZone. Just google for it :)

    • @solomonbeau9637
      @solomonbeau9637 3 года назад

      @Alaric Sylas yup, I've been using Flixzone for since march myself :D

  • @orelmeillasse426
    @orelmeillasse426 6 лет назад +2

    J'aimerais retrouver toutes les responses sur google sans avoir le video .

  • @papematarniang395
    @papematarniang395 6 лет назад +1

    Merci beaucoup.

  • @housseinhassan1106
    @housseinhassan1106 8 лет назад +1

    Je vous apprecie , merci beaucoup

    • @jaicomprisMaths
      @jaicomprisMaths  8 лет назад +1

      merci à toi et plein de réussite pour le bac 2017, j'espère que ces vidéos vont t'aider à cartonner!

  • @ezen3853
    @ezen3853 Год назад

    Je ne comprends pas… Pour la question 2, quand je pose le système :
    n=27+11k
    n=4+7k
    J'obtiens n=-36.25
    Et comment peut-il y avoir plusieurs n solutions ?
    PS: Je suis en 2nde

  • @quantique2000
    @quantique2000 6 лет назад +1

    Bonsoir.Mr.SVP.quel.est.le.logiciel.que.vous.utilisez.et.merci.d.avance.

  • @Hamza-xq2rj
    @Hamza-xq2rj 6 лет назад +2

    j'ai une question dans l’épisode précédant a congrus a b modulo n signifie b=a+n*k et dans celui la a= b+ k*n pourquoi ?

    • @jaicomprisMaths
      @jaicomprisMaths  6 лет назад +2

      bonne question! par exemple 17=2[5] et on peut écrire 17=2+3*5 mais on peut aussi écrire 2=17-3*5 cad 2=17+(-3)*5
      si b=a+kn alors a=b-kn=b+k'n simplement ce n'est le meme k mais son opposé,
      l'idée c que a et b sont congrus modulo n on passe de a à b en rajoutant un certain nbre de fois n,
      ds un sens le nbre de fois est positif, ds l'autre c'est l'opposé donc négatif
      voilà jespere que c clair

    • @Hamza-xq2rj
      @Hamza-xq2rj 6 лет назад +1

      Ah bah dans se cas merci

    • @Hamza-xq2rj
      @Hamza-xq2rj 6 лет назад +2

      jaicompris Maths ah oui une dernière question enfin remarque j,ai remarqué que a chaque fois que l'énonce dis que n est inférieur a un nombre vous prenez le n inférieur ou égale a ce nombre par exemple dans cet énonce n est inférieure a 1000 or dans le corrigé vous prenez n inférieure ou égale a 1000 en parlons de cette dernière question la réponse me semble fausse car il est demandé le nombre d'entier congrus a 27 modulo 11 or la solution donné répond a la question combien d'entier congrus a 5 modulo 11 , et pourquoi k supérieur ou égale a 0 ont a k appartient a Z , merci d'avoir lus ce commentaire et merci d’éclairé ma lanterne

    • @jaicomprisMaths
      @jaicomprisMaths  6 лет назад +1

      tu as raison j'aurai mieux fait d'écrire inferieur strict à 1000, mais ici ça ne change rien, mais la prochaine fois, je mettrai <
      très bonne journée

    • @manuelfalzoialcantara92
      @manuelfalzoialcantara92 3 года назад

      @@Hamza-xq2rj Tu as raison

  • @ouraghyoussef5612
    @ouraghyoussef5612 8 лет назад +1

    Bonsoir
    Pardonner moi d'intervenir sur la question 2 qui peut être résolue plus rapidement par le schéma d'OURAGH comme suite
    n=5[11] ; n=4[7]
    d'où le tableau suivant
    11 . . . . . . . .7. . . . . .4 . .. . . .3 . . . . . 1
    ....................-1 .........-1 ..........-1............
    ....................-3 ..........2 ..........-1...........1
    On relève de ce tableau les nombres (-3) et (2) et donc
    n=( -3*5/11+2*4/7) [11*7]= -17 [77] = 60 [77] soit n=60.
    Cette méthode reste valable pour tout système aux congruences de ce type. Exemple: Soit à résoudre le sytème
    n=735[1967] ; n=67[159]
    Effectuons les calculs sur le tableau suivant
    1967 . . . . . . . . . . . .159 . . . . . .59 . . . . . . .41 . . . . . . . 18 . . . . . .5 . . . . . .3 . . . . . . .2 . . . . . . . 1
    ...................................-12 . . . . . -2 . . . . . . . .-1 . . . . . . . .-2 . . . . . .-3 . . . . .-1 . . . .. . .-1 . . . . . . .. .
    . . . . . . . . . . . . . . . . -767 . . . . 62 . . . . . .-23 .. . . . . . .16 . . . . -7 . . . . . .2 . . . . . . .-1 . . . . . . .1
    et donc
    n=(-767*735/1967+62*67/159) [1967*159] =163996[1967*159]= 163996|312753]
    telle est la solution de ce dernier exercice, solution trouvée en moins de cinq minutes.
    Mieux encore le SCHEMA D'OURAGH permet de résoudre des systèmes linéaires de plusieurs équations.
    Cordialement.

  • @HeimTarch
    @HeimTarch 7 лет назад +2

    il ya une faute dans la troisiéme question : il ya seulement 90 entiers car pour k=91
    n=5+11*91=1006>1000.

    • @jaicomprisMaths
      @jaicomprisMaths  7 лет назад +3

      non pas d'erreur, en effet dans le corrigé k

    • @HeimTarch
      @HeimTarch 7 лет назад +2

      jaicompris Maths oui j'ai ecrit ce commentaire avant de finir la video . de 0 a 90 = 91 valeurs possibles, merci pour la super video

    • @jaicomprisMaths
      @jaicomprisMaths  7 лет назад

      :-)

  • @annaarrouaslorch842
    @annaarrouaslorch842 7 лет назад +1

    Bonjour,
    Je ne comprends pas la solution de la question 3.Pourquoi avoir choisi précisément n=5 et pas n=16 par exemple ?

    • @jaicomprisMaths
      @jaicomprisMaths  7 лет назад +1

      tu prends 27 et tu lui enlève 11, tout en restant positif, ça donne 27 -11=16 puis 16-11=5 et après tu passes en négatif, donc le + petit entier positif congru à 27 modulo 11 est 5. ok?

    • @annaarrouaslorch842
      @annaarrouaslorch842 7 лет назад

      J'ai compris. Merci beaucoup!

  • @michelyobouet8996
    @michelyobouet8996 2 года назад

    Merci

  • @elisenguyen5708
    @elisenguyen5708 7 лет назад

    Très bonne vidéo, cependant j'aimerai vous demander s'il est possible de ne trouver aucune solution? En effet j'ai dans un exercice à résoudre 3x modulo 1(6) , or je ne trouve aucuns entiers égaux à 1 d après votre technique. Merci d'avance

    • @jaicomprisMaths
      @jaicomprisMaths  7 лет назад +1

      C'est tout à fait possible de ne trouver aucune solution, en particulier 3x = 1 modulo 6 n'en a pas . Bonne journée.

    • @elisenguyen5708
      @elisenguyen5708 7 лет назад

      jaicompris Maths Merci pour votre réponse rapide, cela me rassure. Bonne journée à vous aussi!

  • @flight7218
    @flight7218 3 года назад

    Bonjour, est ce que la question 3 est indépendante des deux premières questions ?... J aurai eu tendance à chercher des nombres entiers naturels n tel que n =11k+27...avec 11k+27< 1000....non?

    • @jaicomprisMaths
      @jaicomprisMaths  3 года назад

      oui la question 3 est indépendante, sinon tu peux chercher 11k+27

  • @nickharper587
    @nickharper587 8 лет назад

    merci bcp excellent votre travail bravo vous pouvez nous faire le théorème des restes chinois ? car il est difficile et il n'y a pas bcp de vidéos sur lui slvp

    • @jaicomprisMaths
      @jaicomprisMaths  8 лет назад

      oui c'est prévu car c important mais pas tout de suite, ce sera sous forme d'exercice.

    • @nickharper587
      @nickharper587 8 лет назад +2

      merci bcp si vous pouvez bien l'expliquer ce serais formidable et merci infiniment

  • @florence7764
    @florence7764 5 лет назад

    Euh je crois qu'il y a une erreur sur cette video a 2.39 vs avez écrit que n divise b-a mais je crois que c'est plutot n divise a-b non? Ou alors c'est moi qui suis en erreur!
    sinon super video ca m'a aidée mrc

  • @faisanblanc9430
    @faisanblanc9430 4 года назад

    Merci 😅

  • @mariomassy4751
    @mariomassy4751 7 лет назад

    Salut @jaicomprisMaths quel est le logiciel que tu utilises pour ecrire

  • @francoisplanina4557
    @francoisplanina4557 5 лет назад

    Bonjour , pourquoi dans la dernière question , je ne pourrai pas faire 27+11k < 1000 , et surtout pourquoi le k trouvé (à peu prés 88) n'est pas le même? j'imagine qu'il faut prendre le reste le plus faible mais pourquoi le k diffère ? je ne comprends pas cela. MERCI D'AVANCE !!! :) :)

    • @jaicomprisMaths
      @jaicomprisMaths  5 лет назад

      on trouve que k (entier) varie entre 0 et 90 donc ça fait 91 possibilités

  •  4 года назад

    ces exemples sont pédagogiques: ruclips.net/video/AXz3DFw4GVA/видео.html

  • @mrmiyagi5319
    @mrmiyagi5319 5 лет назад

    8:40 il reste pas plutot 2 que 5 ? 5×1 + 2 =7

    • @jaicomprisMaths
      @jaicomprisMaths  5 лет назад

      si tu es modulo 7, donc tu divises 5 par 7 et combien de fois tu peux mettre 7 ds 5, 0 fois, donc 5=0*7+5 donc le reste est 5

  • @mathserreurs2479
    @mathserreurs2479 3 года назад

    Un exercice intéressant mais rendu compliqué par les 2 DONNÉES 115=27[11] * et -39=27[11]** de la question 1 .
    Voilà que LA * n'est jamais utilisée : pourqoui donc une Donnée inutile est-elle donnée ?
    Mais si l'utilise on peut répondre à la question 2 mais on risque de coincer à la 3.
    Autre remarque :
    Dire que -39= -4×11+5 est un DIVISION EUCLIDIENNE correcte est incorrect
    Dire que -39=-3×11-6 est incorrecte car 'le reste -6

  • @Frank-kx4hc
    @Frank-kx4hc Год назад

    Mais à quoi sert la 1ère question ?

  • @LC95297
    @LC95297 5 лет назад +1

    Bonjour ou bonsoir,
    Cherche une solution détaillée de PGCD(1740,x)=3 dans [[0;1739]]. Par avance merci.

    • @houssemslimani7996
      @houssemslimani7996 4 года назад

      Vous pouvez étudier la divisibilté de 1740 par les chiffres en commençant par le plus grand c.a.d 9 Vous devez après choisir le plus grand chiffre qui ne divise pas ce nombre qui est dans ce cas 9 et puis vous divisez le nombre par ce chiffre c. a. d 1740\9=193,333333
      X vaut dans ce cas 193X9=1737
      Vérification:1740=1737X1+3
      1737=579X3+0
      D'après le théorème d'Euclide PGCD(1740;1737)=3

    • @LC95297
      @LC95297 4 года назад

      1737 est une solution oui.. Mais moi je les veux toutes, plus précisément leur cardinal dans [[0;1739]] ;)

    • @houssemslimani7996
      @houssemslimani7996 4 года назад

      @@LC95297
      ax + by = pgcd(a, b) vous devez dans ce cas dégager une combinaison entre x et y et c aussi simple que ça

    • @LC95297
      @LC95297 4 года назад

      @@houssemslimani7996 Je vais couper court à une interrogation personnelle, avez-vous entendu parler de l'indicatrice d'Euler ? N'allez pas chercher si ça ne vous dit rien, répondez du tac au tac :)

    • @touhami3472
      @touhami3472 4 года назад

      @@LC95297 Bonjour
      J'en trouve 95.
      Désolé, je ne peux pas les réécrire toutes:

  • @fatima-ezzahradamir9950
    @fatima-ezzahradamir9950 8 лет назад

    j'ai pas trouvé quelque reflexes sur le theoreme de Fermat, bezout ??????

    • @jaicomprisMaths
      @jaicomprisMaths  8 лет назад

      ce n'est pas encore prêt. D'abord le PGCD en janvier puis Bezout. très bonne année

  • @ldigout9753
    @ldigout9753 5 лет назад

    Excusez moi ma question peut avoir une réponse évidente mais je ne comprends pas pourquoi on prends en compte le zéro à la question trois, car pour moi il n'était pas congru à 27 modulo 11 mais il y a surement une finesse qui doit m'échapper, je remercie toute aide quelconque

    • @jaicomprisMaths
      @jaicomprisMaths  5 лет назад

      le 1er entier possible est pour k=0 c'est à dire 5+11k=5+11*0=5 et le dernier est pour k=90 donc le dernier est 5+11*90 mais entre ça fait combien de valeur possible pour k : 0,1,...,90 soit 91 valeurs

    • @manuelfalzoialcantara92
      @manuelfalzoialcantara92 3 года назад

      @@jaicomprisMaths le minimum valeur de congruence est 5 et non zero, Digout tu as raison, mais je pense que l énnoncé n ést pas bien faite, on devrait poser la question pour combien de valeur k ( entier positive) verifie la relation binaire de congruence tels que 5+11(k) inferieur ou egale a 1000, il faut bien interpreter la question ( quand il pose la question combien d´entier positive inferieur a 1000 sont congrue a 27 modulo 11, veut dire combien de fois il faut rajouter 11 a 5 ; c ést 0,1,2,3,4... k fois ...91 fois, alors le zero est inclus), li y a donc 90 congruences( n congruences) mais pour qu íl y est 90 congruences ¨, il faut 91 k possibles k de 0 a 90 ( 91)

  • @passouleismaila7631
    @passouleismaila7631 7 лет назад +1

    vous pouvez me former à distance ?

    • @jaicomprisMaths
      @jaicomprisMaths  7 лет назад

      utilise le site jaicompris.com/lycee/math/terminaleS-math.php
      ou chaine youtube c'est fait pou cela
      très bonne journée

  • @Stevando
    @Stevando 4 года назад

    Dans la première vidéo, on avait transformer a ≡ b [n] en
    b = a + kn (avec n naturel et a,b,k entiers relatifs)
    et dans cette vidéo c'est devenu
    a = b + kn
    Je ne suis pas sûr que les deux écritures se valent alors je dois opter pour laquelle ? Merci d'avance

    • @mathserreurs2479
      @mathserreurs2479 3 года назад

      C'est la même chose car dire que a et b sont congrus modulo n 'équivaut à dire a =b [n] ou b= a [n].