pyhon 關聯分析 - 10 關聯分析 + 推薦系統 ( Association rule mix recommendation system in python )

Поделиться
HTML-код
  • Опубликовано: 3 фев 2025

Комментарии • 3

  • @play_data
    @play_data  Год назад

    import pandas as pd
    from mlxtend.preprocessing import TransactionEncoder
    basket = [['Milk', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],
    ['Dill', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],
    ['Milk', 'Apple', 'Kidney Beans', 'Eggs'],
    ['Milk', 'Unicorn', 'Corn', 'Kidney Beans', 'Yogurt'],
    ['Corn', 'Onion', 'Onion', 'Kidney Beans', 'Ice cream', 'Eggs']]
    te = TransactionEncoder()
    te_ary = te.fit(basket).transform(basket)
    df = pd.DataFrame(te_ary, columns=te.columns_)
    'fp-growth'
    from mlxtend.frequent_patterns import fpgrowth,association_rules
    res = fpgrowth(df,min_support=0.05, use_colnames=True)
    out = association_rules(res, metric="confidence", min_threshold=0.7)
    out["antecedents"] = out["antecedents"].apply(lambda x: list(x)[0]).astype("unicode")
    out["consequents"] = out["consequents"].apply(lambda x: list(x)[0]).astype("unicode")
    out.iloc[:,:6]

  • @sannn7777
    @sannn7777 Год назад

    老師真的好強,大大的幫助到我QQQ

    • @play_data
      @play_data  Год назад

      很開心對您有幫助,如果有說錯也歡迎隨時指正我~讓我可以一起進步🥳