A beautiful result in calculus: Solution using complex analysis ( Integral cos(x)/(x^2+1) )

Поделиться
HTML-код
  • Опубликовано: 2 ноя 2024

Комментарии • 123

  • @kilian8250
    @kilian8250 3 года назад +80

    I remember watching this for the first time and not understanding anything. Now I’m finally studying complex analysis and I understand everything :)

  • @alephnone
    @alephnone 6 лет назад +48

    I love how the humor and commentary is integrated (no pun intended) as you walk us through the solution. Well done!

  • @damiandassen7763
    @damiandassen7763 6 лет назад +170

    Could you make a video of integrating x dx in the most hardest and inefficient way possible?

    • @dealwiththebob3877
      @dealwiththebob3877 6 лет назад +37

      Let u = ln((3^x^4^x^i)/e^e^e^x)
      This could be a ‘fun’ substitution to make ...

    • @DragonKidPlaysMC
      @DragonKidPlaysMC 4 года назад +3

      Please do this!

    • @mk-nw4si
      @mk-nw4si 4 года назад +8

      doing this type of solutions is bad, even if trolling.. your brain will actually start thinking in that way. which is bad. just look for the best algorithm to apply to your problems instead. i bet its more fun :D

    • @David-km2ie
      @David-km2ie 4 года назад +17

      @@mk-nw4si Who cares if its bad for you. Its fun!

    • @mk-nw4si
      @mk-nw4si 4 года назад +3

      @@David-km2ie yeah well.. but if someone does it often even if ironically it will just turn into a habit

  • @MooshPeriwinkle
    @MooshPeriwinkle 6 лет назад +87

    real boi + curvy boi = real curvy boi ;)

  • @arranbreckenridge7055
    @arranbreckenridge7055 6 лет назад +22

    I am literally in love with this man tbhhhhhhhhh

  • @TheMauror22
    @TheMauror22 6 лет назад +22

    A similar one was on my complex analysis final exam, it asked to find the integral from -inf to inf of x*sin(x)/x^2+1, surprisingly the result is the same, pi/e. Amazing!!! But to show that Gamma tends to zero as R tends to inf I just used Jordan's Lemma hahahaha

  • @dominikstepien2000
    @dominikstepien2000 6 лет назад +8

    Do more complex analysis videos, please! They are fun to watch and there is not that much of them on youtube.

  • @jameswilson8270
    @jameswilson8270 6 лет назад +8

    Very nice video. I like that you get to the point quickly in your videos. By the way, the integral where you write the limits as R to -R is a poor notation in my opinion because the integral depends on the path. In particular, if you take a (continuous) path from R to -R that crosses the imaginary axis somewhere between i and -i, then the value of the integral is -pi/e instead of 0 (for those who don't know).

    • @hanztimbreza6217
      @hanztimbreza6217 6 лет назад +1

      You're right, the notation was a bit confusing. I was confused for a while

  • @ГЕОРГИЕДРЕВ-ю8р
    @ГЕОРГИЕДРЕВ-ю8р 4 года назад +13

    "And now we need to take a look for the poles...."
    - Someone's FLAMMABLE grandpa,
    September 1st, 1939.

  • @RaymondRossell
    @RaymondRossell 6 лет назад +11

    You're freaking hilarious!! (And brilliant too)

  • @remlatzargonix1329
    @remlatzargonix1329 6 лет назад +2

    I think your videos are great!....You have enormous enthusiasm and a great sense of humour....keep up the great work.

  • @ruskolnikov7211
    @ruskolnikov7211 5 лет назад

    That first contour integral sign you drew. Beautiful.

  • @housamkak646
    @housamkak646 6 лет назад +25

    Hey , i don't know how to integrate on a complex plane and stuff uve done and contour stuff,so please can u make a video explaining these things.

    • @00tact
      @00tact 6 лет назад +7

      Housam Kak. There is a nice book in The Schaum outline series ‘Complex Variables’. You’ll know it in 1 month.

    • @housamkak646
      @housamkak646 3 года назад

      now I do, this is really old!! and GOLD!

  • @prateeksingh9001
    @prateeksingh9001 5 лет назад +6

    You explained it excellently. Even a dumb like me got everything except, why did we replace cosx by e^ix🤔🤔

  • @aniketeuler6443
    @aniketeuler6443 Год назад

    He made complex analysis so simple that my mind is now being complex at everything

  • @amineelfardi4311
    @amineelfardi4311 6 лет назад +4

    I'm not familiar with complex analysis but I still enjoy this =)

  • @ibyzrulez
    @ibyzrulez 6 лет назад +2

    Great video thanks Flammable Maths!

  • @lionelinx7
    @lionelinx7 6 лет назад +1

    I love ur complex analysis videos the best

  • @lucascruz3977
    @lucascruz3977 4 года назад

    Yes, thanks to your videos, I (a freshman) got to solve this 😎

  • @debrajbanerjee9276
    @debrajbanerjee9276 6 лет назад +9

    Now solve this integral
    cos(nx)/(n+x^n) from -inf to inf

  • @user-pn9zm8qg7k
    @user-pn9zm8qg7k 6 лет назад +2

    I see, so the residue theorem is the easy part, the hard part is make the curve path vanish when R approaches at infinity
    nice approach btw

  • @michelkhoury1470
    @michelkhoury1470 6 лет назад

    Nice and correct solution... I solved it by the same way... I love very much complex analysis

  • @dealwiththebob3877
    @dealwiththebob3877 6 лет назад +1

    I have no idea what’s happening but I like it.
    (About to become an undergraduate student studying Maths so I’m in year 13)

  • @danielescotece7144
    @danielescotece7144 6 лет назад

    Subscribed!
    Actually I subscribed a long time ago!
    Well deserved my boi!

  • @hoodedR
    @hoodedR 6 лет назад +1

    Rewatching papa's complex analysis vids...

  • @xerxes4849
    @xerxes4849 3 года назад

    Thank you sooo much. This was beautiful.

  • @hzyildiz
    @hzyildiz 6 лет назад +2

    I love your videos, and the funny thing is that I don't even understand them.

    • @mmtf
      @mmtf 6 лет назад

      You unconsciously accumulate all the knowledge of Papa Flammy so you also learn everything :3

  • @debrajbanerjee9276
    @debrajbanerjee9276 6 лет назад +8

    Another crazy integral:
    What is the integral of sqroot(sinx) from 0 to pi?
    I found it 2√(2/π)(gamma(3/4))^2 in wolfram alpha which seems very interesting.can you provide me the magical steps?

    • @juanignaciodiaz28
      @juanignaciodiaz28 5 лет назад

      Check papa's latest video on the beta function, that should give you an idea on how to approach the problem

  • @soliscrown1272
    @soliscrown1272 6 лет назад +2

    I've thoroughly enjoyed this three part series. What's on the horizon for Flammable Maths?

  • @tonykarp5981
    @tonykarp5981 6 лет назад +36

    But why is it pi/e, I mean, math says so, but why....

    • @YitzharVered
      @YitzharVered 5 лет назад +29

      It's just 1 tho

    • @zuccx99
      @zuccx99 5 лет назад +6

      Because math.

    • @arnavanand8037
      @arnavanand8037 5 лет назад +8

      @@YitzharVered _shut up engineer_

    • @Josh-wb7ii
      @Josh-wb7ii 4 года назад +3

      You could find infinitely many integral representations of whatever wacky combination of the transcendentals you wanted, it’s nothing significant

    • @medchs
      @medchs 4 года назад +3

      @@Josh-wb7ii but this one is pretty _neat_ :
      one fraction, one trig on top, one quatdratic on the bottom, integrating over the entire set of real numbers..

  • @vector3042
    @vector3042 2 года назад

    This was the first method I saw used to solve this problem, and I thought it was the coolest thing I had ever seen at the time. I still love this proof to this day. It's so fun to teach, and is great at the end of a complex analysis course as a perfect demonstration of the important principles.

  • @Walczyk
    @Walczyk 4 года назад

    i did partial fractions just for fun at timestamp 13:37 R/(R^2-1) = R/2(1/(R-1) - 1/(R+1)) = 1/2*(1/(1-1/R)-1/(1+1/R)) ~~ 1/2*(1/1 - 1/1) = 0

  • @noname_whatsoever
    @noname_whatsoever 6 лет назад

    Great channel! It didn't take me a full minute of your content to press that subscribe button. :)

  • @AtotheKres
    @AtotheKres 4 года назад

    I am so proud of myself - I spotted a mistake at 14:01. You state the value of the whole integral is independent of the limit for R. This is not a 100% true. The residue needs to be contained in the contour. Hence R must be bigger than |i|=1. So the integral can turn out to be zero for R

    • @UrasSomer
      @UrasSomer 4 года назад

      I don't think it matters since we let R approach infinity anyways

  • @samialsharari4771
    @samialsharari4771 Год назад +1

    Hi, at 8:10 where did the ( e^i*phi ) disappear? before the integration variable d phih, there was ( e^i*phi ) , where did it go?

    • @M.Hilmi21
      @M.Hilmi21 4 месяца назад

      But the absolut value of this is also just one

  • @oferzilberman5049
    @oferzilberman5049 4 года назад +3

    The german accent+The great content+Calculus+great explanation=
    *_THIS VIDEO_*

    • @PapaFlammy69
      @PapaFlammy69  4 года назад

      :)

    • @jorgegabrielgonzalez5610
      @jorgegabrielgonzalez5610 3 года назад

      @@PapaFlammy69 Estimados @Flammable, por acaso tendrían videos explicativos de Integrales de funciones racionales entre limites infinitos.. multiplicados por seno y coseno por ejemplo ∫ [cosx /(x² + 1)²] dx de (-∞) a ∞

  • @meiwinspoi5080
    @meiwinspoi5080 4 года назад +1

    if i use cauchy’s principal value for integral -infinity to +infinity cos x/x = 0 i am getting a weird answer of pi/2(e^(-1) - e), which actually is negative. What have i done wrong? all answers appreciated.

    • @davidblauyoutube
      @davidblauyoutube 2 года назад

      It seems that integrating cos(x) is fine when x is real, but when extending the domain to complex numbers you need to use Re( e^iz ) instead.

  • @suneetiyer81
    @suneetiyer81 6 лет назад

    Hey I've a few things to say.
    1)Pls do more videos on complex analysis! I really liked it and I'm trying to learn it from your videos.
    2)This may be a stupid question but pls answer me (I'm new to contour integration)
    In this question, if u initially take f(z)=(e^(-iz))/(z^2 +1);
    most of the stuff remains the same, except that the residue at i now becomes e/2i. So the contour integral now equals πe. So, finally wouldn't the answer become πe? Where's the mistake here?

  • @houssine.kacemfel1504
    @houssine.kacemfel1504 Год назад

    hi! please what is the name for this integral ? I have this exercice : ∫ cos(t) / (t^2 + a^2) dt

  • @jaimeaceros6098
    @jaimeaceros6098 Год назад

    can you please re-do this with cos^-1(x)?

  • @geniusgamer7689
    @geniusgamer7689 6 лет назад +1

    Best video 👌👌👌

  • @jekoddragon6227
    @jekoddragon6227 6 лет назад +2

    li_ as r-> inf

  • @susobhanghosh6161
    @susobhanghosh6161 2 года назад

    could you do this sum by cauchy residual method pls... putting cosx=(z+1/z)/2

  • @gideonmaxmerling204
    @gideonmaxmerling204 4 года назад

    Can you do a video on complex analysis.
    the only thing I know about complex analysis is
    that the integral of g(z)dz over the curve c
    where c is defined by the bound [a,b] and the function f
    is the integral from a to b of g(f(x))*f'(x)dx

  • @apostoloskountouris5144
    @apostoloskountouris5144 4 года назад

    I very much like your videos. In this one are you trying to make a point? In that case please share...

  • @dealwiththebob3877
    @dealwiththebob3877 6 лет назад +1

    Integral of 2xln((3x^2+4x-2)/(√(4x-1)) with respect to x.
    Have fun with this L O N G boi

  • @shashankbalaji4122
    @shashankbalaji4122 6 лет назад +2

    Hey! We need some new integrals!

  • @integral-magic6061
    @integral-magic6061 4 года назад +1

    Please antiderivative of f(x)=lncosx

  • @KalikiDoom
    @KalikiDoom 6 лет назад +1

    best way!

  • @c1wang388
    @c1wang388 4 года назад +2

    why do you use exactly this new complex function , couldn't you use an other function at 0:46 ?

    • @Paul-ob2hy
      @Paul-ob2hy 3 года назад

      because Re(f(z)) = the original integrand

  • @albertschotschneider5024
    @albertschotschneider5024 6 лет назад

    That's a boi right there!

  • @hejaeg
    @hejaeg 5 лет назад

    impactante

    • @hejaeg
      @hejaeg 5 лет назад

      me encanta la matemática, pero desde que veo tus vídeos mi gusto se a incrementado notablemente, me fascina ver que hay retos interesantes en las integrales, integrales que no podía hacer ni me imaginaba como hacerlas

  • @user-qq6si7zv3t
    @user-qq6si7zv3t 6 лет назад

    Good explanation, but please use a better audio setup. The echo makes listening to this hard. It makes it louder and harder to hear at the same time.

  • @BlueHood345
    @BlueHood345 4 года назад +4

    I honestly went to this vid just to see how Chinese calculus is.

  • @AndDiracisHisProphet
    @AndDiracisHisProphet 6 лет назад +4

    who is the guy in the thumbnail?

    • @AndDiracisHisProphet
      @AndDiracisHisProphet 6 лет назад

      Thanks. Now i recognise him :D I don't know why, but at first I thought it was Landau....but it couldn't be.

    • @csanadtemesvari9251
      @csanadtemesvari9251 6 лет назад

      is it him, because Pál starts with the letter pi and Erdős with e?

    • @shambosaha9727
      @shambosaha9727 4 года назад

      @@csanadtemesvari9251 Probably not, but fantastic observation! !!!

  • @mayankbhama
    @mayankbhama 6 лет назад +1

    bro please do me a favour
    solve int. tan^2(x)/(1+x^2+2x)

  • @not.harshit
    @not.harshit 5 лет назад

    What if we use e^(-iz) and use the same parametrization of Re^iφ. We get the residue as πe and not π/e or am I doing something wrong

    • @not.harshit
      @not.harshit 4 года назад +1

      @@vallinathan623 Euler's number is e≈2.71. I posted this a while back when I was still an amateur to complex analysis. Your response is appreciated tho.
      As for the answer, it turns out that you cannot use the lower plane for calculating the integral since the inteɡral blows up to infinity as z→∞.

  • @cgo435
    @cgo435 6 лет назад +1

    why do you like integrating so much tho?

  • @arielfuxman8868
    @arielfuxman8868 2 года назад

    Jordan's lemma is crying

  • @JuanLopez-rl7ry
    @JuanLopez-rl7ry 5 лет назад

    I never understood why you can't use do contour integration directly without using converting cosine into a complex form

  • @ruceblee969
    @ruceblee969 4 года назад

    How about e/pi?

  • @macmos1
    @macmos1 5 лет назад

    Why do you use the upper half of the complex plane? It is not clear how or why you choose the upper half of the complex plane. Please explain... Thank you..

    • @macmos1
      @macmos1 5 лет назад

      Mhmm so I could have used the bottom half as well? Since there is a pole there as well and residue theorem can be applied...?

    • @macmos1
      @macmos1 5 лет назад

      Flammable Maths cool.. I really love your videos :) thanks!

  • @Pramodpatel034
    @Pramodpatel034 Год назад

    Kaha se ho bhaiya jo aise bol rhe ho

  • @alexandru8431
    @alexandru8431 6 лет назад

    Can you help me with integral from 1 to 9 of [ln x]/x?

    • @alexandru8431
      @alexandru8431 6 лет назад

      Great! Thanks. But is it possible to solve it like [ln x] is the hand around of ln x?

  • @FernandoVinny
    @FernandoVinny 6 лет назад

    Why equal to Erdos?

  • @alissonmelisaruiz6608
    @alissonmelisaruiz6608 5 лет назад +1

    Te amo :u

  • @unknown360ful
    @unknown360ful 6 лет назад +4

    FIRST COMMENT! PAPA FLAMMY, HAVE A FLAMMY DAY!! #NotificationSquadBois

    • @unknown360ful
      @unknown360ful 6 лет назад

      Definitely with the help of some of Papa Flammy's Flammable Lasers!

  • @hoodedR
    @hoodedR 6 лет назад

    HUH?!!? sneaky flammy where did u come from?!

  • @vandanamallikarjun3045
    @vandanamallikarjun3045 4 года назад

    Sir I have one problem plz give me solution

  • @Armytechrex
    @Armytechrex 6 лет назад +1

    Paul Ërdos

  • @zactron1997
    @zactron1997 6 лет назад +1

    ❤️

  • @yashsrivastav3859
    @yashsrivastav3859 Год назад

    Why do we need to study such complex mathematics? 🙃 (wondering this before my end semester exams tomorrow 🤣)

  • @islamzico7016
    @islamzico7016 4 года назад

    residue theorem

  • @VaradMahashabde
    @VaradMahashabde 4 года назад

    Why did this get recommended to me now?

  • @elyesayadi9184
    @elyesayadi9184 4 года назад

    a siple application o the residue theorem could've made the ime spent solving this integral 4 ties less

  • @ShubhamBhushanCC
    @ShubhamBhushanCC 5 лет назад

    Soo.... = 1 ? By fundamental theorem of engineering

  • @himanshumallick2269
    @himanshumallick2269 6 лет назад +1

    That was what I was looking for!
    But there were some issues with the solution of this problem using Laplace transform as pointed out here:
    artofproblemsolving.com/community/q1h1621189p10146292
    Also, plz solve the integral posted by Kent Merryfield on the same page. I am stuck on that one.

  • @simontimothy7051
    @simontimothy7051 4 года назад

    He looks like Daniil Dubov

  • @sajateacher
    @sajateacher 6 лет назад

    Lost me on that one... I'll have to read up on complex analysis...

  • @ABHisheKSHarma-cd1cf
    @ABHisheKSHarma-cd1cf 4 года назад

    Bro i want to help u but i m poor ..sorry

  • @Pramodpatel034
    @Pramodpatel034 Год назад

    Indai ke to nahi lagta ho

  • @rishabhgaud
    @rishabhgaud 4 года назад

    There is some mistake in it

  • @u3nd311
    @u3nd311 3 года назад

    You're always sayin' "my boys".... What about the girls? 😁

  • @elizabethmeghana9614
    @elizabethmeghana9614 4 года назад +1

    Your explanation is good, but your handwriting is not good. Please work on your handwriting to reach vast number of viewers.

  • @integral-magic6061
    @integral-magic6061 4 года назад

    Please antiderivative of f(x)=lncosx