Tengo una duda, en general si se aparece un ejercicio como el del caso 3, que incluya un valor absoluto que de como resultado un número negativo, no se puede dar solución por números complejos?
Excelente! Pero mí duda es en 2, el exponente no tiene asíntotas en x = 2? En el límite de x tendiendo a 2 el denominador se acerca a cero y todo el exponente tiende infinito...
pero la base es 1 o sea |2-3|=|-1|=1 y da 1^∞ el cual da indefinido además al acercanos por 2 por izquierda y derecha no tienden a infinito ej: si x es 2.1 esto da 0,9^26,1 = 0,063
Pero esto es porque la base dio 1 y daría 1^∞ pero si la base hubiese dado por ejemplo 3 o 2 o 1,5, siempre que no sea 1 sí habría asíntota o bien valido 0 si estuviese en [0, 1)
En el caso de x=3, aparece una indeterminacion del tipo 0^0, y como el exponente se acerca mas rapido a 0 de lo que se acerca la base, el resultado tiende a 1. Se puede comprobar aplicando logaritmos a la ecuacion, y comparando ln(abs(x-3)) con x-3 cuando ambas tienden a 3 mediante la regla de l'Hopital. En definitiva, x=3 si que seria solucion de la ecuacion.
X= 1. Se descarta X= 3 y X= 2 por condición del dominio. No necesito tu explicación, ya lo aprendí en la escuela pública. No soy analfabeto e ignorante.
Vale bro entiendo que te sientas orgulloso de tus conocimientos, pero no hay necesidad de ofender a otros. La educación es un proceso continuo y todos podemos beneficiarnos de compartir conocimientos.
🤩 Gracias, muy buena clase!!
Gracias, saludos.
Muy buena clase de matemáticas, muchas gracias profesor.
Saludos, gracias 😃.
Muy interesante ejercicio, muchas gracias Profesor Ichigo por compartir tan buena explicación. 😊😊❤😊😊.
@@freddyalvaradamaranon304 A la órden, saludos.
Gracias por el video.
Saludos 😃.
Buen video master 👍
¡Interesante ecuación!
Gracias, 😀 saludos.
Buen video profesor !!!
Gracias por su apoyo y comentario 😃.
Grato. Bela aula.
Hola, muchas gracias a usted por su apoyo y comentario 😃.
Curiosidades matemáticas que desafían nuestra habilidad
Excelente.
La representacion de x1= 3 en la grafica tiene un maximo?
Tengo una duda, en general si se aparece un ejercicio como el del caso 3, que incluya un valor absoluto que de como resultado un número negativo, no se puede dar solución por números complejos?
Excelente! Pero mí duda es en 2, el exponente no tiene asíntotas en x = 2? En el límite de x tendiendo a 2 el denominador se acerca a cero y todo el exponente tiende infinito...
pero la base es 1
o sea |2-3|=|-1|=1
y da 1^∞ el cual da indefinido
además al acercanos por 2 por izquierda y derecha no tienden a infinito
ej: si x es 2.1
esto da
0,9^26,1 = 0,063
Pero esto es porque la base dio 1
y daría 1^∞
pero si la base hubiese dado por ejemplo 3
o 2
o 1,5, siempre que no sea 1
sí habría asíntota
o bien valido 0 si estuviese en [0, 1)
En el caso de x=3, aparece una indeterminacion del tipo 0^0, y como el exponente se acerca mas rapido a 0 de lo que se acerca la base, el resultado tiende a 1. Se puede comprobar aplicando logaritmos a la ecuacion, y comparando ln(abs(x-3)) con x-3 cuando ambas tienden a 3 mediante la regla de l'Hopital. En definitiva, x=3 si que seria solucion de la ecuacion.
De hecho el cruce que usted pinta en x=2, se daría para x=3.
Porqué no se considera el caso a=0 ^ b=1 ?.
Si a=0 y b=1, tendrías la expresión 0^(1), y 0^(1) = 0
Porque no es lo mismo un límite, como lo tratan algunas personas a un cálculo sobre un determinado número.
Es correcto, saludos.
X= 1. Se descarta X= 3 y X= 2 por condición del dominio. No necesito tu explicación, ya lo aprendí en la escuela pública. No soy analfabeto e ignorante.
Vale bro entiendo que te sientas orgulloso de tus conocimientos, pero no hay necesidad de ofender a otros. La educación es un proceso continuo y todos podemos beneficiarnos de compartir conocimientos.
bro verifica tu respuesta ☠