Let's Compare Two Numbers

Поделиться
HTML-код
  • Опубликовано: 15 ноя 2024

Комментарии • 16

  • @-basicmaths862
    @-basicmaths862 2 дня назад +13

    17^20>16^20, 64^13>63^13
    17^20>4^40, > 4^39>63^13

    • @bjorntorlarsson
      @bjorntorlarsson 2 дня назад

      Of course! One should perhaps not go down to base 2 immediately, but just halve it and look for an obvious answer.

  • @pwmiles56
    @pwmiles56 2 дня назад +6

    17"20 / 63^13
    = 289^10 / 63^13
    = (289/63)^10 / 63^3
    > 4^10 / 63^3
    = 4x64^3 / 63^3
    > 4 > 1

  • @hazalouldi7130
    @hazalouldi7130 День назад +1

    tu as commis une erreur à5min pour la forme binomiale,on devrait avoir >1.Merci

  • @bjorntorlarsson
    @bjorntorlarsson 2 дня назад +2

    I happened to find my quite old calculator the other day. So I put 17^20 into it, and it said that it is 3. At least if one turns it upside down, otherwise it is E, which would be 14 in hexadecimal. And hex is beyond its specifications. So we do need another method. (It kinda looks like a little pony if one turns it 90 degrees. Like a dead one the other way.)

  • @nathanenzo6807
    @nathanenzo6807 2 дня назад

    Nice

  • @forcelifeforce
    @forcelifeforce 2 дня назад +2

    *@ SyberMath* 17^20 > 16^20 = (4^2)^20 = 4^40 > 4^39 = (4^3)^13 = 64^13 > 63^13
    Therefore, 17^20 > 63^13.

  • @rob876
    @rob876 День назад

    17^20 > 16^20 = 2^80
    63^13 < 64^13 = 2^78
    63^13 < 2^78 < 2^80 < 17*20

  • @Kounomura
    @Kounomura 2 дня назад

    Predicate: 17^20 > *16^20 > 64^13* > 63^13 ---> 16^20 > (4*16)^13 ---> 16^7 > 4^13 -->
    4^14 > 4^13 qed.

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 День назад

    17^2^10or6^1^1^1 17^12^10or6 1^12^2^5or2^3 (x ➖ 3x+2).1^2^1or 2^1 (x ➖ 2x+1). 2^1>2^3 17^20>63^13

  • @scottleung9587
    @scottleung9587 2 дня назад

    I used the powers of 2 to solve this - couldn't believe how easy it was!

  • @Lilobababoi8294
    @Lilobababoi8294 2 дня назад

    idk hahhaa my head dizzy

  • @giuseppemalaguti435
    @giuseppemalaguti435 2 дня назад

    17^13*17^7 or 63^13..17^7 or (63/17)^13...ma si ha che (63/17)^13(63/17)^13..quindi risulta 17^20>63^13....mah,non sono sicurissimo del ragionamento