Find area of triangle.

Поделиться
HTML-код
  • Опубликовано: 11 янв 2025

Комментарии • 2

  • @iMíccoli
    @iMíccoli 5 месяцев назад +3

    I've another solution
    ABOC is cyclic because angle BAC +angle BOC=180° so using Ptolomeu's theorem we have BO×AC + AB×OC= AO×BC.
    Notice that AO=2 because it's the radius and BC=√5 by using Pythagoras in ∆BOC.
    So 1×AC + AB×2=2√5 which means AC=2(√5-AB) but remember that ∆ABC is right triangle so:
    AB²+AC²=BC²
    AB²+[2(√5-AB)]²=(√5)²
    AB²+4(5-2√5AB+AB²)=5
    AB²+20-8√5AB+4AB²=5
    5AB²-8√5AB+15=0 and now let AB=x so then we have 5x²-8√5x+15=0 and by solving the quadratic equation you'll get AB=x=√5 or AB=x=(3√5)/5 but remember AC=2(√5-AB) so if AB=√5 then AC=0 which is an absurd because AC is the side length of a triangle so it must be a positive real number therefore AB=(3√5)/5 and now:
    AC=2[√5-(3√5)/5]
    AC=2[(2√5)/5]
    AC=(4√5)/5 and finally Area(∆ABC)=(AC×AB)/2
    Area(∆ABC)=[(4√5)/5 × (3√5)/5]/2
    Area(∆ABC)=6/5cm².

    • @relishmath5632
      @relishmath5632  5 месяцев назад

      Impressive . . . Thanks for sharing it.