Calculate area of the Blue shaded Quadrilateral | Important Geometry skills explained

Поделиться
HTML-код
  • Опубликовано: 15 янв 2025

Комментарии • 46

  • @beta700a
    @beta700a Год назад +5

    Amazing solution and explanation )) Many thanks 🤩

    • @PreMath
      @PreMath  Год назад

      Glad you think so!
      Thanks for your feedback! Cheers!
      You are awesome. Keep it up 👍
      Love and prayers from the USA! 😀

  • @اممدنحمظ
    @اممدنحمظ Год назад +3

    تمرين جميل جيد . رسم واضح مرتب . شرح واضح مرتب . شكرا جزيلا لكم والله يحفظكم ويرعاكم ويحميكم جميعا. تحياتنا لكم من غزة فلسطين .

  • @theoyanto
    @theoyanto Год назад +3

    Wow... Brilliant example... Awesome , baffled me at first.went right over my head 😃 Thanks 👍🏻

  • @joserubenalcarazmorinigo9540
    @joserubenalcarazmorinigo9540 Год назад +4

    Ladder Theorem
    1/S +1/44 = 1/(22+44) + 1/(33+44)
    De donde S = 924/5
    Luego X = 924/5 - (22 + 33 + 44) = 85,8

  • @rishudubey1533
    @rishudubey1533 Год назад +4

    thankyou so much dear professor 🙏

    • @PreMath
      @PreMath  Год назад

      You are very welcome!
      Thanks for your continued love and support!
      You are awesome, Rishu. Keep it up 👍
      Love and prayers from the USA! 😀

  • @KAvi_YA666
    @KAvi_YA666 Год назад +1

    Thanks for video.Good luck sir!!!!!!!!!!

  • @petrusneacsu
    @petrusneacsu Год назад +9

    Another solution with direct calculation without a system of equations. Join E with D. In the triangle CAD we have FD*2=FC, because the area of AFD=22 and the area of AFC = 44. It follows that in the triangle CED we have: Area of FED*2=33 (area of CEF). Now he had the area of FED=33/2. Now we have x1/y1=Area ACD/Area DCB=Area AED/Area DEB. I note the area of DEB, with z. So we have 66/(33+33/2+z)=(22+33/2)/z The result is z=693/10. So the area of FEBD=693/10+33/2=85.8
    Q.E.D.

    • @User-jr7vf
      @User-jr7vf Год назад

      Does this make use of the theorem presented in the video?

    • @petrusneacsu
      @petrusneacsu Год назад +1

      @@User-jr7vf yes, but it's easier.

  • @HappyFamilyOnline
    @HappyFamilyOnline Год назад +2

    Great explanation👍👍
    Thanks for sharing😊😊

  • @pwmiles56
    @pwmiles56 Год назад +5

    You can do it by the theorem of Menelaus. Take triangle CEF and line ADB. Then
    (AE/AF)(DF/DC)(BC/BE) = 1
    (7/4)(1/3)(BC/BE) = 1
    (BE+EC)/BE = 12/7
    EC/BE = 5/7
    BE = (7/5) EC
    BDFE = (7/5)(77) - 22
    = (539 - 110)/5
    = 429/5

  • @EnnioPiovesan
    @EnnioPiovesan Год назад

    Very good solution

  • @flash24g
    @flash24g Год назад +1

    My approach was to realise that the distances of F, D and E from AC are in the ratio 4 : 6 : 7, based on the triangle area formula with AC as base. From this and with the aid of a custom coordinate system, I worked out how far away B is, giving me the area of the whole triangle ABC and hence the area of the blue quadrilateral.

  • @rachidmeknassi3709
    @rachidmeknassi3709 Год назад +1

    Very nice

  • @tusharmahesh7396
    @tusharmahesh7396 Год назад +1

    U r the best❤

  • @PhysicsMaths-z3l
    @PhysicsMaths-z3l Год назад +3

    Thanks from Russia.

  • @dyalaaleid7838
    @dyalaaleid7838 Год назад +3

    Thanks😍
    Can you give us lessons to prepare to iranian geometry olympiad

    • @PreMath
      @PreMath  Год назад

      Great suggestion! Keep watching.
      You are very welcome!
      Thanks for your feedback! Cheers!
      You are awesome, Dyala. Keep it up 👍
      Love and prayers from the USA! 😀

    • @dyalaaleid7838
      @dyalaaleid7838 Год назад

      @@PreMath thanks❤❤

  • @charlesbromberick4247
    @charlesbromberick4247 Год назад

    nice job

  • @pralhadraochavan5179
    @pralhadraochavan5179 Год назад +1

    Good night sir I like it I proud of your talent

  • @timc5768
    @timc5768 Год назад

    Thanks for that tour de force! Perhaps another method would be:
    Consider AC = y = base ; altitude (CFA) = 4/7 alt.(CEA) =2/3 alt.(CDA). Let G and H lie on AC so that line FG is // to CE, and line FH is// to AD. Then by sim. triangles : AG = (4/7) y, and CH = (2/3)y, so
    GH = [4/7 + 2/3 - 1]y = (5/21) y.
    But triangles FGH and BCA are similar so
    area(BCA) = (21/5)44 = 184.8, (the bases of BCA and FCA being the same).
    So req'd area = 184.8 - (44 + 33 +22) = 85.8 sq. units.

  • @KipIngram
    @KipIngram 9 месяцев назад

    Do those lines bisect the angles they're drawn from? They look like they do.

  • @spiderjump
    @spiderjump Год назад +1

    Area of triangle ACD/area of triangle AFD=66/22=3
    Hence area of BCD/area of BFD=3
    Let area of BFD= b and area BFC=2b and area of BFE=2b-33
    Area of ACE/area ofFCE=77/33=7/3
    Area ABE/Area of BFE=7/3
    Hence (2b-33)4/3= 22+b
    b=198/5
    Area of BFE=2b-33= 231/5
    Area of blue part = 198/5+231/5=85.8

  • @programmer229
    @programmer229 Год назад +1

    Thanks from🇦🇿

    • @PreMath
      @PreMath  Год назад

      You are very welcome!
      Thank you! Cheers!
      You are awesome. Keep it up 👍
      Love and prayers from the USA! 😀

    • @programmer229
      @programmer229 Год назад

      @@PreMath How can I find the math questions in the university entrance exams in America?

  • @honestadministrator
    @honestadministrator Год назад

    Join left-right diagonal of desired quadrilateral to divide the region in two triangles of area X and Y respectively
    Hereby
    (33 /x) = ( 44 +33)/( 22 + x + y)
    4 x / 3 = 22 + y
    And
    (22 /y) = ( 44 +22)/( 33 + x + y)
    i.e. 2 y = 33 + x
    44 + 33 + x = 4 x / 3
    x = 77 * 3 = 231
    Hereby y = (33 + 3 * 77) / 2 = 33 * 6
    Hereby x + y = 7 * 33 + 6 * 33 = 429

  • @alster724
    @alster724 Год назад +1

    Tricky but got the concept

  • @shadmanhasan4205
    @shadmanhasan4205 Год назад

    We can use the given Triangles:
    Green-Yellow = 77 cm-square
    Green-Pink = 66 cm-square.

  • @Waldlaeufer70
    @Waldlaeufer70 Год назад +1

    i) a : 33 = (a + b + 22) : (33 + 44)
    ii) b : 22 = (a + b + 33) : (22 + 44)
    i) a * 77 = 33 * (a + b + 22)
    77a = 33a + 33b + 33*22
    77a = 33a + 33b + 726
    44a - 33b = 726
    ii) b * 66 = 22 * (a + b + 33)
    66b = 22a + 22b + 22*33
    66b = 22a + 22b + 726
    44b - 22a = 726
    i) 44a - 33b = 726
    - 22a + 44b = 726 | * 2
    ii) - 44a + 88b = 1452
    i) + ii)
    55b = 2178
    b = 39.6
    i) 44a - 33 * 39.6 = 726
    44a - 1306.8 = 726
    44a = 2032.8
    a = 46.2
    A = a + b = 46.2 + 39.6 = 85.8 square units

  • @mehulpunia6174
    @mehulpunia6174 Год назад +1

    that's the mayajal of maths

  • @murphygreen8484
    @murphygreen8484 Год назад +1

    Legend has it he's still creating more equations to compare

  • @fokokoster
    @fokokoster Год назад +1

    You assumed the "heights" intersect the sides at 90 degrees.

    • @flash24g
      @flash24g Год назад +1

      Height with respect to a given base is, by definition, the perpendicular distance between the base and the apex. That said, we don't really care about heights. If two triangles have the same apex and collinear bases then the ratio of their areas is the same as the ratio of their base lengths.

  • @张建-w5d
    @张建-w5d Год назад

    好复杂啊!好复杂啊!!come from china,,.哈哈!!

  • @sanchezking6188
    @sanchezking6188 Год назад

    I would have guessed 55.

  • @kibeterick5776
    @kibeterick5776 Год назад +2

    Supersonic

    • @PreMath
      @PreMath  Год назад

      Thanks for your feedback! Cheers!
      You are awesome, Erick. Keep it up 👍
      Love and prayers from the USA! 😀

  • @dakeypunchar6930
    @dakeypunchar6930 Год назад +2

    First

    • @PreMath
      @PreMath  Год назад

      Excellent!
      Thank you! Cheers!
      You are awesome. Keep it up 👍
      Love and prayers from the USA! 😀

  • @chanpangchin9744
    @chanpangchin9744 Год назад +1

    Engr. Chan Pang Chin from San Min Secondary School, Telok Intan, Malaysia aka "the Wizard" has the shortest solution. Join D to E. Let area of triangle BDE = Y .
    (44+22)/ (33+16.5+Y)=(22+16.5)/Y
    Y=69.3 Required area = 16.5+69.3=85.8
    Thanks to Mr Oon Kee Soon, Mr Loke Siu Kow,(San Min), Mr. Ganesan, (HMSS), Mr Lim Chee Lin (NJC, Singapore) , my sifus.乾杯😅

  • @张建-w5d
    @张建-w5d Год назад

    好复杂啊!好复杂啊!!come from china,,.哈哈!!