An Amazing Exponential Equation | Give It A Try!

Поделиться
HTML-код
  • Опубликовано: 5 ноя 2024

Комментарии • 5

  • @Quest3669
    @Quest3669 2 дня назад

    Finally.. 3^ logx= 6 only valid soln. Hence x ^ log 3= 6 Or
    X=(6)^1/ log3= approx 43.1 soln.

  • @RashmiRay-c1y
    @RashmiRay-c1y 2 дня назад

    Let y=x^log3. Then, log x = logy/log3. So, 27^[logy/log3 -1] = y+2 > [logy/log3 -1] log 27 = log(y+2) > 3[log y - log 3] = log(y+2) > 3 log(y/3) = log(y+2) > log(y^3/27) = log(y+_2) > y^3=27y+54 > y= -3,-3,6. But y cannot be negative for real x. Thus, x^log3 = 6 > x= log6/log3. So, x= 10^(1+log2/log3).

  • @StaR-uw3dc
    @StaR-uw3dc 2 дня назад

    27^(logx-1)-x^log3=2
    27^(logx)/27-3^logx=2
    (3^logx)^3/27-3^logx=2
    Let 3^logx=a ≥ 0
    a³/27-a=2
    a³-27a-54=0
    (a-6)(a+3)²=0 hence a=6 (a=-3 rejected as negative)
    3^logx=6 log both sides
    (logx)(log3)=log6
    logx=log6/log3=log(6^(1/log3))
    x=6^(1/log3)

  • @Fjfurufjdfjd
    @Fjfurufjdfjd 2 дня назад

    Ισχυει 3^(logχ)=χ^(log3) χ>0 θετω3^(logχ)=y>0....καταληγω y^3-27y-54=0 ; (y-6)(y^2+6y+9)=0 ; y=6 ή y=-3 απορριπτεται. Αρα 3^(logχ)=6 ; logχ×log3=log6 ; logχ=(log6)/(log3) ; χ=(10)^[log6/log3]