Simple Linear Regression | Code + Intuition | Simplest Explanation in Hindi

Поделиться
HTML-код
  • Опубликовано: 20 дек 2024

Комментарии • 127

  • @deeptisharma90
    @deeptisharma90 7 месяцев назад +43

    most of the lectures from other creators are just translation from English books to Hindi, but YOU truly have in-depth knowledge and to top it off you are such a great teacher, it reveals how much you might have grinded to reach this expertise in DS and ML.
    YOU ARE MAKING AN IMPACT ON SO MANY STUDENTS LIVES!!!!
    Thank you so much

  • @siyays1868
    @siyays1868 2 года назад +34

    I m out of words. Plz. excuse me tii i'll found new words to praise.❤❤ always for this channel. Thanku so much sir...🙏🙏

  • @SONIKABENGANI-d4k
    @SONIKABENGANI-d4k Год назад +4

    Even college professors dont teach so intuitively as you do. Thanks for sharing such un-conventional knowledge in a simple way

  • @tusharshukla9361
    @tusharshukla9361 Год назад +6

    Sir app nahi hote toh hum machine learning nahi sikh paate , love you sir 🙇🙇

  • @balrajprajesh6473
    @balrajprajesh6473 2 года назад +24

    What a beautiful way of explaining things, no rush, everything from basic, wow! Thanks a lot for this sir!

  • @siddharthmodi2740
    @siddharthmodi2740 2 года назад +14

    Your teaching is unbelievable man. Literally this playlist is a gem.💎

  • @adivishku
    @adivishku Месяц назад

    most underrated channel with such a good knowledge ........ huge respect for you sir

  • @SaurabhMishra0709
    @SaurabhMishra0709 3 месяца назад +3

    This channel is literally gold.

  • @messi0510
    @messi0510 Год назад +1

    15:05-->16:36 What is linear regression?
    28:45-->33:05 What is the intuition behind it?

  • @aj_ai
    @aj_ai Год назад +11

    Life is also based on linear regression algorithm.
    Where you have to find a correct mentor(gradient descent) who can help reducing the distractions(errors) in your life with continuous guidance(iterations) and a perfect balance of knowledge (learning rate).

  • @vinupillai6779
    @vinupillai6779 11 месяцев назад

    This is excellent explanation, clearly taught the concept using theory and code with practical example. Thanks alot for knowledge sir.

  • @atulshawarnya5305
    @atulshawarnya5305 9 месяцев назад +1

    Woooow.... No words to say.... I watched to many videos but this one is great..... Really great help for beginners.....

  • @rasheedabanu502
    @rasheedabanu502 11 месяцев назад +1

    Hi sir, I have no words to thank you for this amazing explanation, I'm feeling confident that I can learn ML algorithm after watching this video, Can't thank you enough sir

  • @jaynilpatel8695
    @jaynilpatel8695 2 месяца назад +1

    That intuition at last was too good 💯 .

  • @abhinashpati4625
    @abhinashpati4625 2 года назад

    Finally found a teacher intuitively...Not just for the sake of it.

  • @jazz5314
    @jazz5314 2 года назад

    Waah.. Apka teaching bahoot mast hai... simple and best.. matlab saaaaab samjh ajata hai .. you make difficult topics to understand clear and easy

  • @harshvardhan9127
    @harshvardhan9127 11 месяцев назад

    You know the nerves as well as requirement of people. Very nice way of explaing. Good job!

  • @narendraparmar1631
    @narendraparmar1631 Год назад +1

    Thanks Sir Ji, Lectures are really helpful.😀

  • @TechnicalDrMusic
    @TechnicalDrMusic 2 месяца назад

    Sir kya teaching h aapki interest create kar dete h seriously ❤❤❤❤ 🫡 sir

  • @Thebeautyoftheworld1111
    @Thebeautyoftheworld1111 Год назад

    Best Mentor ever. God bless you.

  • @shrj5023
    @shrj5023 Год назад +1

    No. 1 explaination as always. This is called as coaching. I really don't know every time what to say & how to thank you! Though thanku very much again for the session .

  • @samrs007
    @samrs007 Год назад +1

    Have gone through some of your videos pertaining to various ML topics. Following are my inputs:
    a) Admired your methodology of explaining various ML topics in a simplistic & lucid manner accompanied with Real-time Examples
    b) Inculcating Blackboard methodology of teaching various topics.
    c) Patience factor with a cool mind while explaining various topics which can help while grasping some of the complex ML topics.
    Very much Appreciated!!! Bahut Bahut Shukriya!!! 👍😊🙏
    Furthermore it would be Appreciated, if you can take time to explain Time-Series Forecasting, SEM (Structural Equation Modelling), Monte-Carlo & A/B Testing. Thanks in Advance!!!

  • @sagarambhore4677
    @sagarambhore4677 9 дней назад

    Great Explanation Sir.. Thank You..
    👍👍

  • @TargetMpset
    @TargetMpset 5 месяцев назад

    aap to machine learning ke magician ho 😢❤❤❤❤ superb explanation sir 🎉

  • @SonuK7895
    @SonuK7895 2 года назад

    Best teacher on You tube for Data science Aspirants 🤩🥰

  • @HemaLatha-ij7ux
    @HemaLatha-ij7ux 7 месяцев назад +1

    Sir the explanation is extremely excellent

  • @udaynaidu5864
    @udaynaidu5864 Год назад

    this was the best lr video i came across so far. loved ur teaching

  • @pankajitm
    @pankajitm 2 года назад

    Best teacher for machine learning

  • @TaibAli-on9on
    @TaibAli-on9on Год назад

    Teaching style is outstanding👌❤💥

  • @dhananjayyeole7076
    @dhananjayyeole7076 2 года назад +1

    Sir thank you for best teaching.

  • @pradeeppaladi8513
    @pradeeppaladi8513 Год назад

    Simplest way of teaching. Thanks

  • @shikharawat8096
    @shikharawat8096 2 года назад +2

    Your teachings are seriously gem .

  • @unitedpakistan8516
    @unitedpakistan8516 9 месяцев назад

    very easy to understand. Thank you Sir.

  • @tridibpal857
    @tridibpal857 2 года назад

    Bhai you are simply fabulous. I came here for the first time and was blown away by the explanation. you USP go desi , concepts just baith jata hai

  • @parthaguha4705
    @parthaguha4705 Год назад +1

    Awesome sir😇.
    Thank you so much.

  • @ShreyaShivanandPandey
    @ShreyaShivanandPandey 7 месяцев назад

    bhaiii crazzzyyyy pasha rahe hoooo !!!

  • @srikrithibhat1999
    @srikrithibhat1999 6 месяцев назад +1

    Best explanation ever👍

  • @joydeeprony89
    @joydeeprony89 27 дней назад

    finally understood the meaning of Y = mx + b

  • @abhisheksangle5958
    @abhisheksangle5958 2 года назад

    Sir your way of teaching is very better means very easy to understand👍👍Thank you so much sir🙏🙏

  • @fiza_Aslam
    @fiza_Aslam 9 месяцев назад +1

    Nice insights on this topic….🎉

  • @shinwarikhan4677
    @shinwarikhan4677 2 года назад

    thanks sir .. very helpful video ,,, not only this .. all your videos are awesome ...

  • @VivekSingh-og3ni
    @VivekSingh-og3ni 2 года назад

    Thankyou so much for the session. It was explained so simply.

  • @rohinisingh6916
    @rohinisingh6916 5 месяцев назад +2

    Superb se bhi upper wala explanation h sir thank you so much for this playlist... it's like gold for beginners 😊.

  • @rakeshbhattacharjee2158
    @rakeshbhattacharjee2158 2 года назад

    I luv your teaching style, hope to see more videos..

  • @ParthivShah
    @ParthivShah 9 месяцев назад +1

    Thank You Sir.

  • @tradingdaily409
    @tradingdaily409 Год назад

    Great content great explaination great teacher 🙏

  • @jandaabdulla9335
    @jandaabdulla9335 3 года назад +8

    #50 congratulations sir u r rocking in your teaching 🔥🔥🔥🔥 I like the way u teach I would like to thankyou from my bottom of the heart

  • @FindMultiBagger
    @FindMultiBagger 2 года назад +6

    You are different than other thats makes unique and best.
    Keep it bro. We need more practical conceptionual understanding of all algos.
    We dont understand heavy math and the answer of WHY ???
    You are the one who answered the WHY ?
    THANKS LOT , God bless you 😇😇😇

  • @anshrohatgi4202
    @anshrohatgi4202 2 года назад

    Wow sir much much love keep going ❤❤❤❤❤❤❤❤❤❤❤❤❤❤

  • @namansharma7998
    @namansharma7998 Год назад

    i am big fan of you sir ....amazing sir

  • @rockykumarverma980
    @rockykumarverma980 2 месяца назад

    Thank you so much sir 🙏🙏🙏

  • @vikeshdas3909
    @vikeshdas3909 2 года назад

    you are amazing bro ,your channel is going to boom,amazing explanation

  • @Amitesh.Shrivastava
    @Amitesh.Shrivastava 2 года назад

    awamzinly simplified !!! awesome !! Thanksa lot for this wonderful series of 100 days .. I am a regular follower of your videos please keep posted new such wonderful learnable videos

  • @poojakumari2869
    @poojakumari2869 2 года назад

    God of data science ❤❤

  • @ats898
    @ats898 Год назад

    Sir, can we use this algorithm for reusability purpose?

  • @Adityapachaur
    @Adityapachaur 3 года назад +1

    I am from digital marketing background and working with google ads..i got recently inclined towards data science and planning to build my carrier in the same direction i watched many youtubers who are teaching data science and stuff but i can say one thing you are one of the best.. Also i need to understand do you see a scope of digital marketing and data science together??

  • @examjurney
    @examjurney 2 года назад

    code first is great teaching practice

  • @parthshukla1025
    @parthshukla1025 3 года назад +2

    i felt this concept very easy after learning PCA....hahahahahha,.....thanks sir

    • @campusx-official
      @campusx-official  3 года назад +4

      encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTOlvkz9LPElJ4Ht8pvUMyTuN1RrvxpEXjZIw&usqp=CAU

    • @parthshukla1025
      @parthshukla1025 3 года назад

      @@campusx-official hahahhhahah funny sir ....sir thanks again for teaching us

  • @drdemon6914
    @drdemon6914 Год назад

    i have already learned lot of algorithms but i forgot, here again to learn again do i need to go this detail and deep understanding but many people say its not needed .But will this make it worth it for future datascience learning??

  • @mayankdeopa7617
    @mayankdeopa7617 Год назад

    nicely explained sir but please do video on svm algorithm also

  • @PriyanshuKumar-bk1dd
    @PriyanshuKumar-bk1dd 9 месяцев назад +1

    Great sir

  • @praveenkumawat2662
    @praveenkumawat2662 Месяц назад

    Amazing sir

  • @Aditya-kr9gs
    @Aditya-kr9gs Год назад +1

    Sir one doubt do we have to drop y(target variable) from test_X because we are predicting it otherwise what is difference between train_x and test_x

  • @Iti_Disha
    @Iti_Disha 2 года назад

    Thanks for the explanation sir

  • @heetbhatt4511
    @heetbhatt4511 Год назад +2

    Thank you sir

  • @jaigangan7894
    @jaigangan7894 Год назад

    Thank you for this video

  • @gaurikarale7248
    @gaurikarale7248 2 года назад

    Thank a lot vedios helped a lot ❤️

  • @memevik2237
    @memevik2237 2 месяца назад

    Excellent

  • @rajkumarojha1028
    @rajkumarojha1028 Год назад

    Wonderful video

  • @sahibnoorsingh2432
    @sahibnoorsingh2432 Год назад

    what does random_state=2 represent in the code?

  • @MJtrivedi170
    @MJtrivedi170 2 года назад

    hello Sir can we add two algorithms supervised and unsupervised algorithms
    plzz Sir reply me, Sir, i have work in machine learning

  • @vikasthakur5359
    @vikasthakur5359 2 года назад

    Hello sir, You are too good. I have one simple question I want to learn more about dimensionality reduction techniques. From where I can learn them. It would be good for me if you can share any webpage, video, or book anything.

  • @tanvigupta27
    @tanvigupta27 Год назад

    wonderful explanation

  • @sanskarkurude
    @sanskarkurude Год назад

    where can i get that training data set

  • @damaanilkumar391
    @damaanilkumar391 3 года назад

    I'm from Mech but ur explanation is too good I got the concept

  • @adityaranjan5078
    @adityaranjan5078 Год назад +1

    I did not able to find placement csv file anyone can give link to download placement csv file
    🙏

  • @PALASHPATEL-y9r
    @PALASHPATEL-y9r Год назад

    Hi Sir, I am doing Mtech in AI and Machine learning, I want to know where can I find questions to prepare for my Mtech related to machine learning.

  • @arpittrivedi6636
    @arpittrivedi6636 2 года назад

    explanation was top

  • @saadhashmi9232
    @saadhashmi9232 2 года назад

    sir @CampusX why scaling is not done in the code?

  • @testaccountsocial2281
    @testaccountsocial2281 3 года назад

    Exceptional package :- Sharma ji ka londa 👦🏻😎

  • @shikharawat8096
    @shikharawat8096 2 года назад

    Please explain timeseries too .

  • @ayushpandey5601
    @ayushpandey5601 Год назад

    can somebody please explain that how these dataset can be loaded fastly bcoz it's still running in jupyter?

  • @abhishekkumar-sj2jj
    @abhishekkumar-sj2jj 10 месяцев назад

    just want to say thankyou

  • @SACHINKUMAR-px8kq
    @SACHINKUMAR-px8kq Год назад

    Thankyou So much Sir

  • @jain78343
    @jain78343 Год назад

    Just Perfect

  • @yashjain6372
    @yashjain6372 2 года назад

    very good lecture

  • @jonmasson3311
    @jonmasson3311 2 года назад +1

    G.O.A.T 🐐

  • @avinashglpaccountancy999
    @avinashglpaccountancy999 Год назад

    why cgpa in x axis ? . why not cgpa in y axis ? is there any thinking process behind this.

    • @athulyadevermadam1169
      @athulyadevermadam1169 4 месяца назад

      Cgpa is input and package is the output here , y axis always represents output. y=mx+b , here x input, y output.

  • @stevegabrial1106
    @stevegabrial1106 3 года назад

    best video, thx a lot....

  • @aryanlashkari7954
    @aryanlashkari7954 8 месяцев назад

    How value of m decided

  • @HappyMishra1703
    @HappyMishra1703 Год назад

    Random state means sir??

    • @semifarzeon
      @semifarzeon 2 месяца назад

      If you're referring to the "Random state" of Train test split then it is just telling the train_test_split to pick different data points for train & tests so that whenever you run that code again it picks the same data points as it does previously in first run. If it is 42 then the data points picked for train & test will be different to each other but whenever you run the code again even in a different project it will pick the same data points for train and tests

  • @theb6033
    @theb6033 2 года назад

    amazing sir

  • @siddhigolatkar8558
    @siddhigolatkar8558 Год назад

    Thank you

  • @sandipansarkar9211
    @sandipansarkar9211 2 года назад

    FINISHED WATCHING

  • @shivamtiwari8106
    @shivamtiwari8106 3 месяца назад

    y=mx+c hota hain line ka equation

  • @AvanishKumar-vm1po
    @AvanishKumar-vm1po 6 дней назад

    Just ❤

  • @tusarmundhra5560
    @tusarmundhra5560 Год назад

    awesome

  • @sumanthnimmagadda4472
    @sumanthnimmagadda4472 Год назад +1

    THE ONLY CHANNEL I WATCH ADDS COMPLETELY 🫡

  • @akzork
    @akzork 2 года назад +1

    I can not get that regression line on my plot. I copied your code from GitHub but still it won't show the line.

    • @krishnasayantideb9029
      @krishnasayantideb9029 Год назад

      try this line of code. It will work
      plt.plot(x_train.values,lr.predict(x_train),color='red')

  • @vikeshdas3909
    @vikeshdas3909 2 года назад

    bring convolutional nural network tutorial please