Это видео недоступно.
Сожалеем об этом.

Math Olympiad Problem, you should know this trick!

Поделиться
HTML-код
  • Опубликовано: 22 авг 2023
  • Comparison, which one is greater, 50^50 or 49^51?
    This fantastic math problem frightened 300K+ students! Watch the video and find out the answer!
    Welcome to join and become a member! Click the link below and join us:
    / @mathwindow
    This question originally came from a video/question posted two months ago by me ( Math Window ). It was the comparison between 2023^2023 and 2022^2024. However, such a fantastic question and wonderful method didn't bring so much views and few students learnt this trick, so I decided to share it with you again.
    If you want to use this question & the explaining steps to make a video, please give a mention. Thank you!

Комментарии • 391

  • @nunuzak
    @nunuzak 9 месяцев назад +93

    I don't know if you know but this video is being blatantly copied, here's the link: ruclips.net/video/Um53h6yq_6o/видео.html
    If you look at the comments here there are various ways in which you can solve the problem but in the specific video they have the same script/format with how you systematically solved the problem, even down to the explanation of the constant "e" and how they used 1/6 instead of 1/49. Even the title is copied.

    • @mathwindow
      @mathwindow  9 месяцев назад +53

      Thank you for your remind!
      Not only is this copied, but also my other videos! Not only are my videos copied, but many videos from other channels as well!
      Even the duplicates have more views than the original ones! SHAMEFUL!!!

    • @nunuzak
      @nunuzak 9 месяцев назад +4

      @@mathwindow Glad to be of help, what's worse is that youtube recommended that specific video to me. It might be the case that the algorithm pushed it to me because I watch your videos. Shameful behavior indeed!

    • @spthepero2282
      @spthepero2282 9 месяцев назад

      Blud doesn't even get copyright 💀

    • @ANDREI42697
      @ANDREI42697 9 месяцев назад

      @@spthepero2282 it aint even copied

    • @m0key1987
      @m0key1987 8 месяцев назад

      But the video in the link is newer than this bruv

  • @chrisstuart6651
    @chrisstuart6651 11 месяцев назад +368

    I divided both sides by base 49 to the power of 50. That yielded base 50/49 to the power of 50 compared with 49. Algebra shows that the base 50/49 requires a power greater than 193 to exceed 49, so base 50 to the power of 50 is less than base 49 to the power of 51.

    • @tagamag
      @tagamag 11 месяцев назад +35

      That's how I did it too! It took just a minute. The method in this video is such a waste of ink.

    • @BalderOdinson
      @BalderOdinson 11 месяцев назад +68

      Please define "Algebra Shows"

    • @user-cx4gc5lh4b
      @user-cx4gc5lh4b 11 месяцев назад +19

      @@BalderOdinson Yeah, that sounds more like arithmetic than algebra.

    • @beeble2003
      @beeble2003 11 месяцев назад +4

      @@BalderOdinson We want to find k such that (50/49)^k >= 49. Log is monotone, so we can take logs of both sides, giving k log(50/49) >= log 49, and solve for k. Pretty lame for an Olympiad problem to be so easily solvable with a calculator.
      Edit: actually, with a calculator, you can just instantly see that 50^50 and 49^51 differ by two orders of magnitude, so the whole thing is pointless. I'd assumed they'd at least look equal to the precision that a standard calculator would give.

    • @BalderOdinson
      @BalderOdinson 11 месяцев назад +83

      @@beeble2003 proving it without a calculator is the whole point.
      Any proof that involves picking up a calculator could be substituted by just using a calculator on the original question.

  • @delunarm
    @delunarm 11 месяцев назад +35

    I multiply every thing by zero. No more problem. Back to dog videos.

  • @SanePerson1
    @SanePerson1 11 месяцев назад +73

    Divide both by 50⁵⁰: 1 vs. (49/50)⁵⁰ × 49 = (0.98)⁵⁰ × 49
    Take natural logs of both and rearrange slightly: 0 vs. 50•ln(1 - 0.02) + ln49
    To a very good approximation, ln(1 - 0.02) ≈ -0.02, so this is to a good approximation, 0 vs. 50(-0.02) + 2ln7 or 0 vs. -1.0 + 2ln7
    The rhs is easily positive, so the circle encloses a "

    • @mathwindow
      @mathwindow  11 месяцев назад +8

      👍🏻👍🏻👍🏻💟💟💟

    •  11 месяцев назад

      Or just note that if a is larger than c and 2a = b + c is larger than 2 times Euler´s number, then a^a is larger than b^c by basic calculus.

    •  11 месяцев назад

      Well, here c is larger than a in my last post. The largest exponent gives the largest value if the conditions in my last post are met. (51^49 is less than 50^50 which is less than 49^51).

    •  11 месяцев назад

      Nice calculation

    •  11 месяцев назад

      Of course there is the requirement that the numbers are "close". For example 12^188 is larger than 100^100, But 11^189 is less than 100^100. Here logarithms come in handy. 188 ln(12) is greater than 100 ln(100), which is greater than 189 ln(11). (51 ln(49) is greater than (50 ln(50).

  • @asdf-bl9ci
    @asdf-bl9ci 9 месяцев назад +30

    I saw a lot of people doing complicated solutions but i did it in a simpler way, don't know if it would work in all cases. I first tested this same case with smaller numbers that you can actually calculate: 4^4 and 3^5, in this case 4^4 > 3^5 and the diference between them is 13. Then i tested it again with 5^5 and 4^6, and in this case 5^5 < 4^6, and the differencre between is -971. With that we can see the difference will just keep getting bigger with higher values, so from that point on the number with the highest exponent will be greater, so 49^51 > 50^50.

    • @1mol831
      @1mol831 8 месяцев назад

      Can it be proven to hold for all cases?

    • @diegomatias2320
      @diegomatias2320 8 месяцев назад +1

      I have done it the same way

    • @Vapor817
      @Vapor817 8 месяцев назад +3

      ​​​​​@@1mol831 you can probably use induction to prove x^x < (x-1)^(x+1) for all integers starting with some base case like x=5

    • @kaustubhnadiger3387
      @kaustubhnadiger3387 8 месяцев назад +1

      ​@@Vapor817 nope, easily disproved for x=2

    • @Vapor817
      @Vapor817 8 месяцев назад +5

      @@kaustubhnadiger3387 in induction proofs, a base case means all numbers below it are disregarded. x=4,3,2,1... and on are all considered irrelevant where the base case is x=5. after that, you just need to prove that the statement holds for all cases where (x+1) replaces (x) and use the inductive hypothesis to assume the statement involving x is already true, which holds if the base case is true, which is true for x=5.

  • @m.caeben2578
    @m.caeben2578 10 месяцев назад +76

    If you go in a calculus approach, you can consider the function
    f(a) = (50-a)^(50+a) = e^{(50+a)ln(50-a)}
    You can take the derivative, which is
    f’(a) = (50-a)^(50+a) [(50+a)/(50-a) + ln(50-a)]
    One can see that f(a) monotonously increases at least in the range such that
    (50+a)/(50-a)>0 and (50-a)>1
    => f monotonously increases for
    -50 < a f(0) < f(1) => 50^50 < 49^51
    Which is what we wanted. And it is nice to see one can immediately get
    51^49 < 49^51
    And the like exercises.

  • @afrosamurai3847
    @afrosamurai3847 11 месяцев назад +198

    The math is interesting to be shown but I really feel this more of a logic test as with the base numbers being so close just being multiplied that 1 extra time is a massive jump over the other. So it had to be the bigger of the two.

    • @pietervanderveld3096
      @pietervanderveld3096 11 месяцев назад +7

      exactly what I was thinking

    • @akorzan
      @akorzan 11 месяцев назад +23

      Yup, in a timed exercise, this proof is unnecessary and as a teaching aid it is too convoluted.

    • @godrav8818
      @godrav8818 10 месяцев назад +4

      Or we can just use logs to figure out the number of digits.

    • @arnemyggen
      @arnemyggen 9 месяцев назад +1

      True

    • @lance4377
      @lance4377 9 месяцев назад +3

      True, but if it wasn't proven are you 100% sure tho? Maybe 70% or 80% but never 100%. Math is all about 100% right solutions(at least 99% of math cuz theoretical maths)

  • @romank.6813
    @romank.6813 11 месяцев назад +37

    Divide both by 49*50^50. Then LHS=1/49, the RHS =(49/50)^50=(1-1/50)^50 which is very much 1/e. e=2.718

    • @aashutoshmurthy
      @aashutoshmurthy 9 месяцев назад +1

      (1-1/50)^50 is not 1/e. Don't be confused with the sign. We could argue that (1 - 1/50) is less than 1, which implies (1-1/50)^50 < 1. The conclusion is same. Great approach.

  • @adluzz3216
    @adluzz3216 9 месяцев назад +3

    I think this is just for knowing how numbers work.
    You can just do 10^3 and 11^2.
    It is 1000 for 10^3 and 121 for 11^2

  • @SubhadipDey999
    @SubhadipDey999 9 месяцев назад +7

    6:57 Why should the limit of (1 + 1/n)^n, as n goes to infinity, is smaller than 3 imply that (1 + 1/n)^n is smaller than 3, for ALL n?

    • @determinedhelicopter2948
      @determinedhelicopter2948 8 месяцев назад +1

      Because it has a decay function. But with the smallest number that makes sense... (1+1/2)^2 to 1.5×1.5= 2.25 okay small but maybe a BIG number works
      (1+1/9001)^9001≈2.71813
      No matter what, this function will not pass its limit for positive numbers, which is eulur's number, that is < 3

    • @Zicrus
      @Zicrus 8 месяцев назад

      It doesn't by itself

  • @crep50
    @crep50 11 месяцев назад +35

    See, I just used a calculator. But 50^50 and 49^51 are so large they would probably just give an error, so instead i took _the log of both,_ and 51log49 is larger than 50log50.

    • @noname-ed2un
      @noname-ed2un 2 месяца назад +2

      I don't think this is right. 50^50 in log would be something like log base 50 x = 50 ( i use x because we don't know the answer

    • @druhindatta1976
      @druhindatta1976 Месяц назад

      Logarithm is the most viable/ easiest method

  • @WookieRookie
    @WookieRookie 11 месяцев назад +13

    I did that with derivatives, that was tough! You should just take derivative from x^(100-x) then solve the transcendental equation, the solution is easily guessed: it is somewhere near 24 or 25. On infinity the derivative is negative, so the function is lesser for 50^50 as 50 > 49 and both 50 and 49 are greater than 25.

  • @guitartommo2794
    @guitartommo2794 13 дней назад

    Work out value of x when x^x = (x-1)^(x+1). For any +ve n>x: the result of n^n < (n-1)^(n+1).

  • @freedomdive1881
    @freedomdive1881 10 месяцев назад +10

    I choose 49^(51) because it is usually the bigger exponent who would give the bigger value.

    • @rxgezfn2316
      @rxgezfn2316 9 месяцев назад

      Yh 😊

    • @damnthisgirl2130
      @damnthisgirl2130 9 месяцев назад

      And also it’s only 50&49 as base difference of 1

  • @JMurph2015
    @JMurph2015 11 месяцев назад +6

    Take the log of each side, know the log power rule making 50log(50) vs 51log49 and we all know that log grows sublinearly, but monotonically increasing, therefore 49^51 is easily bigger.

  • @tommyrjensen
    @tommyrjensen 9 месяцев назад +2

    The suggested solution is incorrect. The fact that (1+1/n)^n converges to e as n→∞ says nothing about how large (1+1/49)^49 might be. It only says something about the asymptotic behavior of the function that maps n to (1+1/n)^n. An easy and correct way is to use the inequality ln(1+1/n) < 1/n, derived from the Taylor expansion of the natural logarithm, to deduce ln( (1+1/49)^49 ) = 49·ln(1+1/49) < 49·1/49 = 1, which implies (1+1/49)^49 < e. To participants in a math olympiad this should be a trivial exercise.

  • @randomstuff8828
    @randomstuff8828 11 месяцев назад +4

    50 to the fiftieth power is approximately 8.8817E84.
    49 to the fifty-first power is approximately 1.5848E86.

  • @mathwindow
    @mathwindow  11 месяцев назад +4

    If you have any interesting & splendid questions to provide, just comment! I will choose some of them to make Shorts ❤

  • @wbcchsyn
    @wbcchsyn 11 месяцев назад +4

    e < 3, it is OK, however, how do you proof (1 + 1/n)^n is less than 3 when n equals to 3?
    I do not think it is obvious.

    • @MichaelRothwell1
      @MichaelRothwell1 11 месяцев назад

      Please see my comment for a proof that (1+1/n)ⁿ

    • @mathwindow
      @mathwindow  11 месяцев назад +2

      Maybe I should make a video on it

    • @renaherbert3142
      @renaherbert3142 11 месяцев назад

      @mathwindow I know 1/49 is less than 1/6. I just don't see where the 1/6 come in to play to solve the problem. You wrote it down, but I don't see where that value came from. I watched that part 5 times and still did not see it. Maybe I overlooked. Just curious about that. Thanks.

  • @AntonioCarlosFLima-xv5zk
    @AntonioCarlosFLima-xv5zk 11 месяцев назад +1

    Extract root 50 both sides which yields 50 ? 49x49^(1/50), and knowing that numbers < 1 rised to any positive power online be 1 at the infinite, so 49x0,... will be < 50.

  • @hasanjakir360
    @hasanjakir360 Месяц назад

    Take log on both sides, take the exponent in the front as a constant, divide by (51*50). This yields a comparison between 2 values of function ln(x)/(x+1). The left side is x=50 and the right side is x=49. This function is clearly decreasing. So we have a solution.

  • @johnnyenglish3503
    @johnnyenglish3503 8 месяцев назад +1

    I think i found an easier way:
    you subsitite x with 50, you get on one side x^x for 50^50 and for 49^51 you get (x-1)^(x+1) and then using binomial formulas and etc you get:
    50^50 < 50^51 - 2498 (as 2489 is much smaller than 50^50 x 50)
    Tell me what you think!

  • @wobblyorbee279
    @wobblyorbee279 11 месяцев назад +4

    7:33 when did 1/6 came from? Is there any reason to be specifically 1/6 or it's just to simplify the multiplication... (but then we could just use 1/3 and it would be 50/49 and LARGER than 1)

    • @zhongliangye1283
      @zhongliangye1283 9 месяцев назад

      We could use any number bigger than 1/49,for example 1/48,1/47,1/46....etc. 1/6 is one of these numbers chosen by the lady to be accurate and convient enough to solve the problem. if you choose 1/3,It's not accurate if we know the result is smaller than 50/49,what we need to know is that whether the result is smaller than 1.

  • @physicguy92093
    @physicguy92093 11 месяцев назад +2

    I just used binomial theroem at (1+(1/49))^50 *(1/49)≈ (1+(50/49))*(1/49)=99/49^2 so yeah maybe not the best but it did the job basically it states that (1+x)^n ≈ 1 + nx

  • @phant1795
    @phant1795 10 месяцев назад +1

    Nobody here has an intuitive solution.
    The clear proof is to write 49^51 as 7^102 and 50^50 as 5sqrt(2)^100. We can the approximate 5sqrt(2) as 5*1.414 = 7.07:
    => 7.07^100 < 7^102
    => 7.07^100 < 7^100 * 7^2
    /7^100 => 1.01^100 < 1 * 49
    => e < 49
    Which is true. No frills, no fancy theorem, and no extra computation, just the knowledge of the approximate value of sqrt(2) and the value of e.

  • @Sqrt.Infinity
    @Sqrt.Infinity 9 месяцев назад +3

    *Me destroying every single theories:*
    50^50 49^51
    50^(50-49) 49^(51-49)
    50^1 49^2
    50 < 2401
    Hence 50^50 < 49^51
    Very less time taking + right answer with wrong methods

  • @FreestyleViewer
    @FreestyleViewer 11 месяцев назад +7

    Method 1: We must know this Fundamental Result that in the Sequence, given by [1+(1/n)]^n or [(n+1)/n)]^n, that is (2/1)^1, (3/2)^2, (4/3)^3, (5/4)^4, … the successive terms are larger and finally converge to some largest value which is greater than 2 and less than 3. We can obtain these results just from the Binomial Expansion of [1+(1/n)]^n and rearrangement of the terms, without going in to any concept of the number e. In fact, this observation contributed most to the beginning of the History of ‘e’, which, due to its unique properties, is used as the base for Natural Logarithm.
    Similarly, in the Sequence of the inverted terms, namely (1/2)^1, (2/3)^2, (3/4)^3, (4/5)^4, … the successive terms are smaller and finally converge to some smallest value which is lesser than 1/2 and greater than 1/3.
    Now, coming to the Question,
    Let R = (49^51)/(50^50)
    Or, R = [(49×49)(49^49)]/[(50)(50^49)]
    Or, R = (49×49/50)(49/50)^49
    We know that (49/50)^49 is larger than 1/3. Therefore, R is larger than (49×49/50)/3, which is 49×49/150. Or, R is greater than 1. Hence 49^51 > 50^50
    Method 2: Consider the Function f(x) = (50-x)^(50+x). Using Calculus [Take log and differentiate], for this Question, in particular, we observe that at x=0 to x=1, f(x) is increasing. So, f(0) < f(1); Or 50^50 < 49^51.
    In general, we can show that f(x) is increasing at x = .., -2, -1, 0, 1, 2, etc. until x nears 26 or so. Therefore, … < 52^48 < 51^49 < 50^50 < 49^51 < 48^52 < …
    Related Practice Questions:
    Q1: Which is Larger: 24^76 or 25^75
    Q2: Which is Larger: 23^77 or 24^76
    Q3: Prove by simple Algebra that the successive terms in the Sequence (2/1)^1, (3/2)^2, (4/3)^3, (5/4)^4, … are larger.

    • @mathwindow
      @mathwindow  11 месяцев назад +3

      Good Job 👍🏻👍🏻👍🏻💟💟💟 Thank u for your idea

    • @spikeb.3627
      @spikeb.3627 11 месяцев назад +1

      So these all are the reasons, why the following rule also works? When comparing two powers x^y, the power is considered greater, where the product log(y) * x is smaller.
      I learned it from the comments of a simular task on the German channel "Mathematik Tricks".

  • @euva209
    @euva209 9 месяцев назад +1

    x^x>(x-1)^(x+1) as long as x>4.141041525..., the value being easily obtained from Newton's iterative formula for non-linear equations.

  • @alfianfahmi5430
    @alfianfahmi5430 8 месяцев назад +1

    Well IIRC, if the number of digits on the base numbers were in the same range (like 10 with 11 being 2-digited numbers), even if one of the base numbers were bigger, the bigger exponent will always have bigger value no matter which one has it.
    So by that logic, because the difference between 50 and 49 was small enough, I can assume that the value of 49^51 would be at least 10 times larger than 50^50.

    • @ssjlun
      @ssjlun 8 месяцев назад +1

      Exactly how I thought, didn’t need to do any math.

  • @ThePouryay
    @ThePouryay 11 месяцев назад +7

    Nice approach, but you could easily take “log” from each side and the answer would appear much sooner

    • @la.zanmal.
      @la.zanmal. 11 месяцев назад +2

      Only with access to a calculator. Otherwise it is only kicking the can down the road, so to speak - the problem of evaluating the logarithm by hand is not any easier, and will probably use a similar trick.

    • @beeble2003
      @beeble2003 11 месяцев назад

      @@la.zanmal. Right but it's pretty lame to have an Olympiad problem that's so easily solved with a calculator. Edit: actually, don't even bother with logs. Your calculator can do 50^50 and 49^51 and they differ by more than two orders of magnitude. I was expecting that they'd be close enough together that they'd look equal to the precision that a standard calculator gives.

    • @gatoordinario94
      @gatoordinario94 11 месяцев назад

      No need calculator because log 50/log 49 ~= 1. The exponents drop which gives the factor constants 50 and 51. How 50 < 51 hence 50^50 < 49^51

    • @beeble2003
      @beeble2003 11 месяцев назад +3

      @@gatoordinario94 Your argument is incomplete. You need to show that log 50/log 49 < 51/50. You've correctly argued that the left hand side is close to 1. That's not enough, as the right hand side (1.02) is also close to 1, and we need to know which of these numbers is bigger.

  • @JamenLang
    @JamenLang 11 месяцев назад +4

    If you are just checking to see which is larger do you absolutely need to keep the exponents at 50 and 51 or can you "simplify" this to 50^2 and 49^3?

    • @pi-1089
      @pi-1089 11 месяцев назад

      What you're doing is reducing both exponents by 48. This is not doing the same to both terms. One term is devided by 50^48 and the other by 49^48. If your change really would be the same on both, then you would be right.
      To better wrap your head around consider this: You have a lake with swimming lake flowers. On the first day, 1m² of the lake is covered and from then on each day the covered size doubles. If you went back from day 14 to day 12 or from day 8 to day 6, it would both times be 2 days but the amount of lake flowers would be much more in the jump from 14 to 12, as "doubeling" the size from day 12 is much more than doubeling the size from day 6.

  • @timjoslin1613
    @timjoslin1613 11 месяцев назад +6

    I think the proof using binomial expansion of 50^50 (== (49+1)^50) is simpler. Just my opinion

    • @mathwindow
      @mathwindow  11 месяцев назад +1

      That's right!

    • @m.caeben2578
      @m.caeben2578 10 месяцев назад +1

      ¿How would this proof go?

  • @Sanad-Abbas
    @Sanad-Abbas 8 месяцев назад +7

    Every time you are increasing the power like 10^6 and 10^7, it becomes a huge difference because it would have more zeros at the end, so the number with the larger power would likely to be larger than smaller one. Unless it more complicated, I could not say that 2^3 is larger than 4^2, so it varies on cases, but since the digits are close, I think you can tell.

  • @sagzbebou1069
    @sagzbebou1069 11 месяцев назад +1

    When x is large, (x-1)^(x+1) > x^x.
    Let x be a positive integer. We want to compare x^x and (x-1)^(x+1).
    We address here the case when x is large (>>1).
    To do so, we take the log: log ((x-1)^(x+1)) = (x+1) log(x-1).
    x being large, log(x-1) = log(x(1-1/x)) = log(x) + log(1-1/x) \approx log(x) - 1/x because log(1+u) \approx u when u is small.
    So, (x+1) log(x-1) \approx (x+1) (log(x) - 1/x) = x log(x) + log(x) - (x+1)/x
    We conclude that when x is large, (x+1) log(x-1) - x log(x) \approx log(x) - (x+1)/x
    And obviously, log(x) - (x+1)/x is also dominated by log(x) which not only is positive, but diverges!
    So, when x is large, (x-1)^(x+1) > x^x.
    Remains the question of 'large'.
    Well, instead of developing the log(1-1/x) around zero, you can keep its exact value and study the difference,
    (x+1) log(x-1) - x log(x) = log(x) + (x+1) log(1-1/x).
    Starting from x=5, you can show that this difference is monotonic, increasing, so large is not so large, it's x=5.😉

  • @Huxya
    @Huxya 7 месяцев назад

    generic solution
    x^x vs (x-1)^(x+1) transforming it to 1/(x-1) vs (1-1/x)^x then left part is 0 < 1/(x-1) < 1/4 for x>5 right part: 1/4 < (1-1/x)^x < e for x>2, thus for any x> 5 right part is always larger. Done

  • @Aurora-ux9vb
    @Aurora-ux9vb 2 месяца назад

    heyy idk if it defies anyone here, but
    49⁵¹ can be written as (50-1)⁵¹ now as we know it is (50-1)*(50-1)...(50-1) 51 times, using basic algebra, the first term of this polynomial is 50⁵¹, last term is 1, now all the inbetween terms would be negative as power is odd, as 50(-1) power n times is 50 if its even, and here it is even only, as there are 50+1 terms(the term whose 50 we are multiplying wont be considered, obviously, in the same way the term 50 multiplied by 50 gives a positive value greater than 50, so the negative terms are def lesser than 50 which gives, 50⁵⁰-50+x, just signifies that x is any value lesser than +infinity and greater than 50, simply x belongs to (50,inf)
    no limits needed
    it shows that 49⁵¹ is greater

  • @Bully_Maguire007
    @Bully_Maguire007 9 месяцев назад

    You could also have done it using logarithms
    Taking log ( base 49) of both sides and the approximating value of log(base 49 ) (50) and getting the answer

  • @CGTxPrince47
    @CGTxPrince47 Месяц назад +1

    3:08 50 and 49 they have special relationship that is 50 is one more than 49.
    Very special relationship 😂

  • @borismarinkovicgutierrez2349
    @borismarinkovicgutierrez2349 8 месяцев назад

    49^51 is larger. I solved it with a simple arithmetic calculator and a logarithm table.
    50^50 49^51
    log 50^50 log 49^51
    50 log 50 51 log 49
    50 x 1.6989 51 x 1.6901
    84.948 86.200
    Inv log Inv log
    8.8716^84 1.5849^86

  • @dhy5342
    @dhy5342 11 месяцев назад +2

    Since the question was which side is greater, without requiring proof, I intuitively knew that the side with the higher power is greater for anything greater than 3^2 vs 2^3

    • @beeble2003
      @beeble2003 11 месяцев назад +3

      But this question is about comparing x^x vs (x-1)^(x+1), not about comparing x^(x-1) with (x-1)^x.

  • @jitenderkumaryadav6513
    @jitenderkumaryadav6513 21 день назад

    Just consider (50/49)^50 vs 49. (50/49)^50 has 51 terms with only one term 1 and one term (50/49) larger than 1. You can take the excess 1/49 and any one of the remaining terms and merge them with any one term and still have 49 terms with only two equal to one nad rest less than one. This would always be less than 49.

  • @yessod7263
    @yessod7263 7 месяцев назад

    (1+1/49)^50 is a number very small approximately 1. If it was raised by infinity it would be 1 im the limit. Using an approximation, the result should be 1,xxx (near 1) multiply by 1/49, which would be a number below 1. So, the result would be 50^50

  • @niu.06
    @niu.06 8 месяцев назад

    A simpler step could be dividing the (50/49)^50 inside term, that will be 1. smth and overall approx to 1 now this 1/49 is obviously small term hence the final answer is that 50^50 is smaller than 49^51

  • @bharatmahaan2991
    @bharatmahaan2991 Месяц назад

    Use smaller numbera and verify...
    5⁵ and 4⁶
    5⁵ = 5x5x5x5x5 = 3125
    4⁶ = 4x4x4x4x4x4 = 4096

  • @indianbeast644
    @indianbeast644 9 месяцев назад +1

    Can t we just take example like 50 ²

  • @tyronex9518
    @tyronex9518 8 месяцев назад

    We can compare the two numbers by taking their ratio:
    (50^50) / (49^51)
    Simplifying this expression, we can rewrite it as:
    (50/49) ^ 50
    Since 50/49 is greater than 1, raising it to the 50th power will give us a number that is greater than 1. Therefore, (50^50) / (49^51) is greater than 1, which means that 50^50 is greater than 49^51. Therefore, 50 to the power of 50 is larger.

  • @moniqueboyke5879
    @moniqueboyke5879 11 месяцев назад +1

    Great video and great question and great solution to problem

  • @yumpiri
    @yumpiri 8 месяцев назад

    You can already see which is bigger below (not a definite mathematical proof though...)
    50^50= (49+1)^50=49^50+2*49*1+1^50
    49^51=
    49^50*49

  • @GetMeThere1
    @GetMeThere1 11 месяцев назад

    I'd like to know: if you take two integers x^x and (x-1)^(x+1), is the second one always larger? 4^4 = 256 and 3^5 = 243. Then 5^5 = 3125 but 4^6 = 4096. Now the second is larger. Does that relationship continue always now, as x gets even larger?

    • @swenji9113
      @swenji9113 11 месяцев назад +1

      We first note that comparing x^x vs (x-1)^(x+1) is equivalent to comparing x.ln(x) vs (x+1).ln(x-1), which itself is equivalent to comparing ln(x)/(x+1) vs ln(x-1)/x.
      So we want to study the variations of the function x -> ln(x)/(x+1). The derivative is (1+1/x - ln(x))/(x+1)^2 which is positive for small x's but becomes negative afterwards (I believe the sign changes between 3 and 4?).
      Coming back to our studied function, it is increasing for x small but quickly becomes decreasing. Therefore, for x big enough,
      ln(x)/(x+1) < ln(x-1)/x and so we get that x^x < (x-1)^(x+1)

  • @ashishjyotisaikia
    @ashishjyotisaikia 11 месяцев назад +1

    Please ma'am solve this question...what is the remainder of 128^2023 divided by 126.... It's a Olympiad question. Please sir solve this

    • @mathwindow
      @mathwindow  11 месяцев назад +1

      Ok, i will give it a shot!

  • @ladytz2928
    @ladytz2928 9 месяцев назад

    if you formulate the question x*x and (x-1)*x+1 and start to put small numbers in these formulas you would see except for one (4*4 and 3*5), (x-1) * (x+1) is always greater than x*x

  • @benjamin_staun
    @benjamin_staun 8 месяцев назад

    Would it be possible to simply time bith sides by 50? This makes lefthand side equal to 50^51 and righthand (49*50)^51 which is obviously greater?

  • @sergeyk7821
    @sergeyk7821 8 месяцев назад

    consider n^n < (n-1)^(n+1) for n >= 5, then prove it by induction is what I did. Your solution is definitely more elegant!

  • @user-fg1pk8iy4l
    @user-fg1pk8iy4l 9 месяцев назад

    make them to the nth power,(let n -> infinity ) take log , you will find right side is bigger than left side

  • @ayushmaanraturi
    @ayushmaanraturi 9 месяцев назад

    Can't we do comparative analysis? For eg. 50^3 = 125,000 and 49^4 = 5,764,801, hence 50^3 < 49^4 so 50^50 should be lesser than 49^51

  • @MitchBurns
    @MitchBurns 8 месяцев назад

    Or you could just know that bigger exponent than base is bigger than bigger base than exponent for the same numbers, as long as both numbers are greater than e. And this problem is just using a midpoint which would obviously be between them. Not a hard proof but it works. Yeah 2^3

  • @angmori172
    @angmori172 11 месяцев назад +2

    Am I wrong here?
    50^50 = 5^50 * 10^50 vs 49^51 = 4.9^51 * 10^51
    5^50 < 4.9^51 * 10 since
    5^2=25 < 4^3=64
    and the gap grows wider for the next step
    5^3=125 < 4^4=256
    Meaning 5^n never overtakes 4^(n+1).
    We don't even need to consider the extra *10, which I thought was going to be important lol
    Or am I messing this up? It's 7am and Ive been up all night so it's very possible

    • @mathwindow
      @mathwindow  11 месяцев назад +2

      No, you are totally correct!💟💟💟✅✅✅

    • @tomraw2239
      @tomraw2239 11 месяцев назад +1

      No it's not true. For example 5 ^7 is bigger than 4^8. Try another, bigger numbers the different will be larger:)

    • @reasonatehcr2446
      @reasonatehcr2446 11 месяцев назад

      @@tomraw2239 well u could just prove it with numbers like 10 and 11 and then just say that exponent is obviously higher than the numbers as the difference grows larger and larger

  • @DhruvrajSingh-gd4zv
    @DhruvrajSingh-gd4zv 11 месяцев назад

    The exponents are 50 and 51 so by binomial theorem there will be 51 and 52 terms so 49^51>50^50
    5 second question

  • @brandonk9299
    @brandonk9299 11 месяцев назад

    Another way that I approached it employed the binomial theorem and root approximation:
    50^50 ? 49^51
    (49+1)^50 ? 49*49^50
    (1+1/49)^50 ? 49
    1+1/49 ? 49^(1/50) Now x^(1/a) ~ t+ (x-t)/a*t^(a-1) where t is a close estimate to the root
    letting t = 1, then 49^(1/50)= 1+ (49-1)/50*1^(50-1) = 1+48/50*1^49 = 1+48/50
    Comparing now
    1 + 1/49 ? 1 + 48/50, leaves 1/49 ? 48/50 so 50 ? 48*49 where ? must be "

  • @mehdiben1858
    @mehdiben1858 8 месяцев назад

    You can just do 1+nlog(x) and find the number of digits

  • @wasapdoc
    @wasapdoc 9 месяцев назад

    No need.
    A slightly bigger number multiplied certain times is way smaller than a slightly smaller multiplied one more time. Because the last added multiplacation is done to the total number reached before it while the increase in the multiplied number is an increment.

  • @ParthBnsl-iitis
    @ParthBnsl-iitis 9 месяцев назад +2

    I did it in a very simple manner using basics of binomial... I wrote 50^50 as (49+1)^50 and expanded it a bit as..
    (50c0.49^50 + 50c1.49^49 + 50c2.49^48+ - - - - + 50c50.1).... EQN. 1
    Now i evaluated the numerically greatest term in the expansion using (n+1) /(1+|a/b|) - 1

  • @TZAR_POTATO
    @TZAR_POTATO 11 месяцев назад +1

    I solved it with the properties of logs. Taking the log of both sides simplifies to 50 log 50 and 51 log 49. Log 50 and log 49 are almost the same due to log based anything big, squishes changes hard. Therefore, 50 and 51 are compared alone.

    • @vincentorz4014
      @vincentorz4014 10 месяцев назад +1

      lol yes the easiest way

    • @AA-tt7fl
      @AA-tt7fl 9 месяцев назад

      "The best solution is always the easiest." This is it..

    • @ratopetista4508
      @ratopetista4508 8 месяцев назад

      it is a god aproximation in most exponecials cases this will solve

  • @dmitrimaslov3168
    @dmitrimaslov3168 10 месяцев назад

    Just an easy way, even no pen or paper needed: 3^3 > 2^4; and 4^4 > 3^5, but already next group 5^5 < 4^6 with a gap increasing on 6^6 < 5^7 and so on.
    Safe to interpolate 50^50 < 49^51.

  • @Summoned_J
    @Summoned_J 11 месяцев назад +1

    Very simple compare 50log5o & 51log49

    • @beeble2003
      @beeble2003 11 месяцев назад

      If you're going to use a calculator, just ask it 50^50 and 49^51, and it'll tell you that they differ by two orders of magnitude (about 10^84 and 10^86).

  • @riceblues7548
    @riceblues7548 11 месяцев назад +2

    In fact I became interested in the question for which integers m>1 the expression m^m < (m-1)^(m+1) is valid, which is m>4. A nice one.

    • @locim9201
      @locim9201 10 месяцев назад

      3^3 < 2^4, just wonder how come it’s m>4? I mean m = 3 is already valid

  • @jasonkrueger-myers8690
    @jasonkrueger-myers8690 11 месяцев назад

    I just used a calculator to observe that 5^5 is less than 4^6. I therefore generalized that for any positive number n greater than 2, n^n < (n-1)^(n+1).

  • @warb635
    @warb635 9 месяцев назад

    And can something be done with the root of ((50/49)^50)/49 = ((50/49)^25)/7 ?

  • @sauravsirswal15
    @sauravsirswal15 8 месяцев назад

    I thought of other method that you write 49 as (50-1) and then apply binomial expansion on it and neglecting some terms. Then compare it

  • @user-il8mt2wz9t
    @user-il8mt2wz9t 6 месяцев назад

    Excellent math question and more excellent explanation thereon😊

  • @user-dj8uc9wh1o
    @user-dj8uc9wh1o 11 месяцев назад +1

    Зачем так сложно? Чтоб сравнить числа в степени надо чтоб основание либо степень были одинаковые. 50^50 меньше (49×49) ^50. Высшая математика не нужна

  • @mathwithmelissa617
    @mathwithmelissa617 9 месяцев назад +1

    This is a great video!

  • @a7la_karam
    @a7la_karam 8 месяцев назад

    my quastion is why or from where he decided to make e < 3 like why 3?

  • @johnhudson1965
    @johnhudson1965 11 месяцев назад +1

    50^50/(49^50)

  • @AmanPhogat.
    @AmanPhogat. 9 месяцев назад

    In x^y if x+y = 100 always as constant then 24^76 will be greatest among all

  • @DuyenNguyen-cx7do
    @DuyenNguyen-cx7do 11 месяцев назад

    Check by comparing 51log49 and 50log50; shows 50exp50 is GREATER than 49exp51.

    • @beeble2003
      @beeble2003 11 месяцев назад

      If you're going to use a calculator, just ask it 50^50 and 49^51, and it'll tell you that they differ by two orders of magnitude (about 10^84 and 10^86).

    • @Aulkk
      @Aulkk 11 месяцев назад

      0.03>1/49>0.02😅😅
      e(50/49)

  • @AlexeyEvpalov
    @AlexeyEvpalov 11 месяцев назад +2

    Спасибо.

  • @noahvale2627
    @noahvale2627 11 месяцев назад +1

    Never-ending, I was not thinking straight. I got it now.

  • @kevinemery2750
    @kevinemery2750 11 месяцев назад +9

    i knew the correct answer immediately just based on the principle that in large numbers, the exponent is always more influential than the base; for example although in the case of 2^3 < 3^2 the base matters more . . . this is an exception to the rule because the numbers are so small . . . the rule that "exponents have more influence than the base" applies for even slightly bigger numbers; for example 5^6 > 6^5. I have no proof to offer, but there is a general rule that holds
    when comparing numbers x^y vs (x-1)^(y+1)
    as long as both x and y are greater than 2
    then (x-1)^(y+1) will always be greater than x^y

    • @PruthvirajNalawade-is8mn
      @PruthvirajNalawade-is8mn 11 месяцев назад

      same, but i also dont know how to apply any of these formulaes as i am in grade 8

    • @SkinSlayer26
      @SkinSlayer26 11 месяцев назад +3

      If x = 3 and y = 4, then (x - 1)^(y + 1) = 2^5 = 32; and x^y = 3^4 = 81. So, unfortunately, the hypothesis is false.

    • @isaacfitzer971
      @isaacfitzer971 11 месяцев назад

      @@SkinSlayer26 It works if the numbers are relatively close to each other and none of the 4 numbers drops below 3

  • @oriongurtner7293
    @oriongurtner7293 9 месяцев назад

    Honestly these are waaay more simple than they seem, just graph x^x=y and (x-1)^(x+1), then compare ‘em, they intersect at around 4.136 and never look back

  • @Verschlungen
    @Verschlungen 10 месяцев назад

    Step 1: 49/50 = 0.98. Step 2: 51 minus 50 equals 1. We now see that 49^51 divided by 50^50 = 0.98x10^1 or 9.8.
    In other words, 49^51 is about ten times larger than 50^50. Done. (No calculator, no higher math involved here. Just pencil and paper, and grade school arithmetic.)
    Meanwhile, in the comments, I see only conniptions involving logs and e and binomial expansions and derivatives and functions that increase monotonically. Why? Are 7th grade students no longer taught the arithmetic method shown above? (Perhaps I missed it, but in 171 comments I believe no one simply substracted the exponents as shown in Step 2 above. I find that very weird. Not to mention the several dozen 'logic' steps in the video itself in contrast to my 3 seconds of arithmetic.)

  • @スナイパートレーダー
    @スナイパートレーダー 7 месяцев назад

    In physics all things work the same but they can have different scales
    4⁶>5⁵ which means 49⁵¹>50⁵⁰

  • @swarnamayeedas6356
    @swarnamayeedas6356 7 месяцев назад

    take log of both the numbers and compare them

  • @studymaster7388
    @studymaster7388 9 месяцев назад

    In our jee preparation we can solve these type of problems orally .
    You can use binomial to quickly get answer

  • @paulortega5317
    @paulortega5317 10 месяцев назад

    oh it is just the simple matter of solving N^N = (N-1)^(N+1). For X>N this result is true .

  • @ZainKhan-rt7xm
    @ZainKhan-rt7xm 14 дней назад

    Too easy to compare the binomial expansion of (1+(n-1))^n with (n-1)*(n-1)^n. Easily shows how the later is significantly higher than the former part for n>4.

  • @frh_astroboy8215
    @frh_astroboy8215 11 месяцев назад +1

    Appreciate ur work... WELLLLL DONEEE

  • @sundareshvenugopal6575
    @sundareshvenugopal6575 6 месяцев назад

    49 almost = 100/2. So roughly estimating whereas 49^51 will be close to a 102 digit number but 50^50 will be close to a 100 digit number.

  • @simone-y7u
    @simone-y7u 9 месяцев назад

    I took the ln on both sides and solved it really easily. Admittedly a calculator is required. ln50^50 = ln49^51
    50 ln 50 = 195
    51 ln 49 = 198

  • @tanyachou4474
    @tanyachou4474 11 месяцев назад +1

    You can demo the 2an method as well ? Really like you channel btw 😊

    • @erayozeren4164
      @erayozeren4164 9 месяцев назад

      Friend, it's not that difficult. It's been multiplied by 49, 51 times, so it reached the 50th time, and at the 50th time, it was multiplied by 49 once more. The other one stopped when it was multiplied for the 50th time. This video has been explained to clarify.

  • @ByteBridge999
    @ByteBridge999 7 месяцев назад

    Write 49 as 50-1 and use binomial expansion

  • @finnjake8264
    @finnjake8264 8 месяцев назад

    I thought of it in a simplar way. We have that 50^2 is less than 49^3, then 50^n is less than 49^(n+1), so 50^50 is less than 49^51.

  • @ugoc3300
    @ugoc3300 11 месяцев назад

    My estimate would be 49^51 greater. Because for two numbers being only 1 unit appart, also being powered at least 50 times, wich is a lot, 51>50. But i do not know the verification yet.

  • @dhrambiragarwal3520
    @dhrambiragarwal3520 10 месяцев назад

    Just take log on both side we can easily bring power down

  • @timbond6176
    @timbond6176 9 месяцев назад +1

    все куда проще - находим производную функции (a-x)^(a+x) a=50 убеждаемся, что на больше нуля

  • @prajith273
    @prajith273 9 месяцев назад

    Bro simple apply log on both sides and check by basic values

  • @roden2208
    @roden2208 11 месяцев назад +1

    Для чего введено "меньше чем 1/6"? Ведь и так видно, что 3*50 меньше чем 49*49, значит - дробь меньше единицы.
    А всё остальное - классно! Браво!

    • @maligosssaron3416
      @maligosssaron3416 8 месяцев назад

      Ещё есть грубая ошибка. Было сказано, так как лимит меньше 3, то и член последовательности меньше 3... Но пределы не так работают. Они лишь говорят, что лишь только с какого-то некоторого члена последовательности значения этой последовательности находятся около предела. И нас не волнует, как ведут себя числа до этого.
      Вместо этого нужно было доказать монотонность последовательности

  • @Dippps
    @Dippps 11 месяцев назад

    what is the rule that you can move power of differrnt number out of bracket. its wrong

  • @saschaak3595
    @saschaak3595 9 месяцев назад

    Why not simply to multiply both sides by 50. you will get then 50^51 and the other side 50*49^51 where you can clearly see which one is bigger. Pls don’t be rude if this is wrong approach. I already forgot Mathematics 😂

  • @Zelgie
    @Zelgie 8 месяцев назад

    you can otherwise just use the log, its done in less than 3 lines