Merging DataFrames in Pandas | Python Pandas Tutorials

Поделиться
HTML-код
  • Опубликовано: 22 ноя 2024

Комментарии • 73

  • @JW-pu1uk
    @JW-pu1uk Год назад +34

    This is such a solid explanation on this. If someone is familiar with SQL JOINS, they should feel right at home here (with a few exceptions of course). Don't sleep on Pandas, and don't sleep on AtA videos.

  • @SamiMouloudMerkouche
    @SamiMouloudMerkouche 11 месяцев назад +5

    Im datascience learner I use datacamp as my learning platform and your video has helped a lot with that.Thanks for the amazing explanation and keep going we need more people like you.

  • @Richardo-o3z
    @Richardo-o3z Месяц назад

    Right away from Ghana , every bit of your explanation is on point and you have had so much impact on my journey as a data analyst. Thank you Alex

  • @sj1795
    @sj1795 10 месяцев назад +3

    Really appreciate how you explain these concepts so clearly. As always, THANK YOU ALEX! You are the BEST!

  • @casual_gaming001
    @casual_gaming001 Год назад +2

    Thanks alot, i have been on youtube and Stack overflow all evening. Best explanation

  • @levimungai1846
    @levimungai1846 Месяц назад +3

    This is set theory... union, intersection, set difference and cross product

  • @chingchan3000
    @chingchan3000 Месяц назад

    you explain better than my professor....thank you!

  • @carmelool1
    @carmelool1 7 месяцев назад +1

    Excellent Video. Very well explained. Thanks for doing it.

  • @bhavikakapadia2497
    @bhavikakapadia2497 Год назад +8

    Thanks Alex for the amazing Explanation. I learn a lot by watching your video. Are we expecting more pandas tutorials in the upcoming video?

    • @AlexTheAnalyst
      @AlexTheAnalyst  Год назад +2

      Yep! I've got about 3 more including visualizations, data cleaning, and data exploration :)

  • @midohany9
    @midohany9 11 месяцев назад +1

    Thanks for the amazing explanation. This is the first playlist I know you from and Your way of illustration is pretty simple and helped me get confusing pandas terms. Many thanks again ❤

  • @JaimeHaddad
    @JaimeHaddad Год назад +3

    Thank you Alex ! Well explained and very simple to understand ! Great as always!! 👏

  • @Niranga.555
    @Niranga.555 Год назад +3

    Dear Alex,
    Thanks for your nice explanation..!

  • @vijayj8024
    @vijayj8024 Год назад +3

    Thank you alex. You are amazing....

  • @БулатШарафутдинов-р6д

    Thank you!)

  • @venudunde3453
    @venudunde3453 Год назад +2

    thanks Alex, nice explanation

  • @djitymik
    @djitymik Год назад +1

    You nailed it! Thank u very much sir!!!

  • @OliviaWu-q9z
    @OliviaWu-q9z 10 месяцев назад +1

    This is so helpful. Thank you!

  • @anurasenarathna1703
    @anurasenarathna1703 6 месяцев назад +1

    Very useful series, very well explained. Thank you very much for sharing your knowledge.

  • @abdulkadirguven1173
    @abdulkadirguven1173 Год назад +1

    Nice tuto. Thank you very much.

  • @aissamboudra7995
    @aissamboudra7995 Год назад +1

    Many thanks, clear and useful

  • @femikomolafe5604
    @femikomolafe5604 Год назад +2

    Wished I saw this video earlier....I would have saved days of wasted hours with simple concatenate function. Tnk Alex

  • @pamm3914
    @pamm3914 4 месяца назад +1

    Well Explained Sir.... Thanku so much

  • @pavithras4085
    @pavithras4085 6 месяцев назад +1

    Many Thanks for this clear explanation :)

  • @Daniel-me6mu
    @Daniel-me6mu 2 месяца назад

    Love this explanation. It will help me to go through my exam :))

  • @neildelacruz6059
    @neildelacruz6059 Год назад +1

    Excellent Thanks

  • @shadrinan90
    @shadrinan90 4 месяца назад

    Thank you for concise and interesting video. I ve learned everything I wanted

  • @thaonguyen-xu2tw
    @thaonguyen-xu2tw 3 месяца назад

    hi, thank you for the explanation. I liked it already but still want to comment to appreciate your effort.

  • @t_millagain5255
    @t_millagain5255 Год назад +1

    Definitely what i needed 👍🏽

  • @ElBasraoui
    @ElBasraoui 6 месяцев назад +2

    bro I'm a data scientist student, it's the first time I understand that in such a stunningly beautiful way

  • @albertneil290
    @albertneil290 9 месяцев назад

    Awesome ❤❤
    Very well explained.....

  • @vidyutroy2868
    @vidyutroy2868 3 месяца назад

    thank you for sharing such tutorials

  • @chamo7110
    @chamo7110 7 месяцев назад +1

    You have a new subscriber here

  • @khadijashaikh9617
    @khadijashaikh9617 3 месяца назад

    please make a video on numpy library in python

  • @josemariahernandezlara4061
    @josemariahernandezlara4061 Год назад +1

    The best!

  • @abdullahmirza7606
    @abdullahmirza7606 Год назад +1

    Alex the king 👑👑

  • @stanTrX
    @stanTrX Месяц назад

    Thanks. What do you think about capability of these compared to power query in excel?

  • @stefanvilcu8260
    @stefanvilcu8260 9 месяцев назад

    wonderful video

  • @osiomogieasekome8799
    @osiomogieasekome8799 Год назад +1

    I don't know if its because I learnt sql first but I feel its more straight forward than python... Also doing this a month later, the append still works without any warning 😅 I wonder python would decide to remove

  • @sachinmaroky4600
    @sachinmaroky4600 Год назад

    thank you

  • @shalinivijayravikumar9713
    @shalinivijayravikumar9713 11 месяцев назад +1

    "Hi Alex, could you please upload a video on NumPy for beginners? It would be incredibly helpful for me, and I would greatly appreciate it."

  • @hello-fs9bt
    @hello-fs9bt 4 месяца назад

    Thank you very much! I don't know how to tell you how much this video help me but you just saved me a lot of time! Very well-explained, easy to understand! I wish you all the good things in life.

  • @SieanElpidama
    @SieanElpidama 6 месяцев назад

    Qestion is there a function of merge as well in Sql specifically PostgeSQL?

  • @vintage_anime_vault
    @vintage_anime_vault 4 месяца назад

    wonder how many Data Analysts you made out there !!

  • @ArtyomAshigov-l8j
    @ArtyomAshigov-l8j Год назад +3

    I watched other videos about Pandas, they were really good.
    I just wrote a comment here, that was probably deleted and I am not sure why

    • @AlexTheAnalyst
      @AlexTheAnalyst  Год назад +3

      Had an issue with my first video and had to reupload - thanks for watching! :D

  • @sandeepmanjunath8004
    @sandeepmanjunath8004 Год назад +1

    Just one doubt is it possible to join on any condition other than equality condition in pandas like we do in SQL for example T1.Col1 < T2.Col1

  • @ReadyF0RHeady
    @ReadyF0RHeady 14 дней назад

    can i also do it with json files or do they need to be csv files ?

  • @angelinesworld5841
    @angelinesworld5841 2 месяца назад

    Need notes for this. Could you please share this

  • @rashadkasim
    @rashadkasim Год назад

    Can we do 2 dataframes side by side in pyspark? Similar to concatenate here

  • @garvjain3462
    @garvjain3462 Год назад +2

    🎯 Key Takeaways for quick navigation:
    Merging, joining, and concatenating data frames in Pandas is crucial for combining separate data frames into one.
    Types of joins: inner join (default), outer join, left join, and right join.
    Cross join compares each value from the left data frame with every value from the right data frame.
    The join function is used to join data frames based on specified indexes, but it requires more manual configuration compared to the merge function.
    Concatenation places one data frame on top of another (vertically) or side by side (horizontally).
    The append function is deprecated and should be replaced with the pandas.concat function for appending rows from one data frame to another.
    Understanding these operations is essential for working with multiple data sources in Pandas.
    Made with HARPA AI

  • @garry6882
    @garry6882 Месяц назад

    how do you put image in the notebook?

  • @beingotaku9864
    @beingotaku9864 Год назад +14

    Merge is bettter hands down.

  • @monique1112223
    @monique1112223 10 месяцев назад

    I got an error message on the cross join and it isn't visible in the menu with SHIFT + TAB either. Interesting.

  • @anikkantisikder2179
    @anikkantisikder2179 Год назад

    Great

  • @hafsaabdullahi1250
    @hafsaabdullahi1250 19 дней назад

    Am unable to import the dataset am getting the error 'str' object is not callable. what could be the issue?

  • @winaraj
    @winaraj 6 месяцев назад

    merge doesnt work in vsc? says no attribute

  • @guocity
    @guocity 8 месяцев назад

    how to do union in dataframe?

  • @milanvulic7947
    @milanvulic7947 28 дней назад

    Barromir :O

  • @yilmazah
    @yilmazah Месяц назад

    Selam. Oglun cok sansli, ona duskun bir babasi var masallah

  • @مسافر-ح2ط
    @مسافر-ح2ط 6 месяцев назад

    Alex tell me the truth, are you a divine angel?

  • @the_seahawk22
    @the_seahawk22 Год назад

    wait how did you get the file path link? Sorry I am not computer savy

    • @shivamborkotoky3788
      @shivamborkotoky3788 Год назад

      after you download the file from the given link in description, copy the file path from your pc

  • @patrickmeehan6856
    @patrickmeehan6856 Год назад +2

    Barromir= Boromir

  • @akzork
    @akzork Год назад

    Dark mode when?

  • @ankuryadav9908
    @ankuryadav9908 24 дня назад

    #append_is_no_more

  • @mdsy2707
    @mdsy2707 10 месяцев назад

    1:38
    😂🤣🤣

  • @_sweeteststarr
    @_sweeteststarr 6 месяцев назад

    Legolas 😂😂

  • @jameelabduljalil25
    @jameelabduljalil25 Год назад

    I thought Lord of the Rings sponsored this video.

  • @soundmagus
    @soundmagus 2 месяца назад

    Hey Alex, thanks for these videos they are great :) However i am getting different results from you when using df1.merge(df2), its showing IDs 1001,2,6,7,8 - and i cant figure out why, has soimething changed in the most up to date python? (also shows the same if i use df1.merge(df2, how = 'inner', on = ['FellowshipID', 'FirstName'])but with _x and y_ for Age.
    FellowshipID FirstName Age_x Age_y
    0 1001 Frodo 50 50
    1 1002 Samwise 39 39
    2 1006 Legolas 2931 2931
    3 1007 Elrond 6520 6520
    4 1008 Barromir 51 51