Thank you for watching! If you want to learn more about diodes, you can read our full article at: www.electrical4u.com/diode-working-principle-and-types-of-diode/
I don't think viewers fully comprehend how important your vid really is. It literally defines every technical term used in semiconductor physics. It is very well done! Most YT vids don't use or understand this terminology. Awesome.
You have so nicely explained working of diod that even a young child will clearly understand. Your lecture is of utmost quality. You are having gift of gabs
What is a pn junction ? A pn junction allows current in one direction only. It blocks current in the reverse direction. When a pn junction is formed, a potential barrier designated Vo comes into existence and is typically around 0.6 to 0.7 volts for silicon junctions. When the barrier whose Vo is 0.7 volts is disturbed by applying a forward bias of say, 0.6 volts, the current increases and the increase becomes steep for small increments of the forward bias value a little greater than 0.68 volts. Large currents are observed when the forward bias is 0.69 volts which is closer to the barrier voltage of 0.7 volts. The forward bias can never exceed the potential barrier voltage nor can it bring the barrier down to zero volts. That is the reason you seldom see current vs volt graphs of pn junction diodes beyond a volt or so. How does the bias remain less than the barrier in an operational diode? The voltage bias applied drops in the bulk neutral regions of the diode. The current in a forward bias adjusts to fulfill the conservation of current law and the rate of recombination. A detailed description of the pn junction with a distinct approach using surface charges, alignment of Fermi levels, creation of the barrier, the distinct processes of diffusion, drift, recombination and the influence of the electric field on the energies of electrons is provided in the following textbooks. Electrostatics and circuits belong to one science and not two, that of electricity and magnetism. To know how they are unified visit this link matterandinteractions.org/articles-talks/ and view the article 'A unified treatment of electrostatics and circuits. B. Sherwood and R. Chabay, unpublished. (1999)' pdf. For a live demonstration of surface charge and its effects in circuits visit ruclips.net/video/U7RLg-691eQ/видео.html For a detailed discussion of surface charge, coulomb's law, electric fields, fields of dipoles and other charge configurations, and parallel plates, and a distinct approach using the surface charge concept in the study of advanced topics of capacitance, currents, conservation of charge, conservation of current, superposition of fields, superposition of potential, simple dc circuit, magnetic fields, magnetic fields of a current element, straight wire, current loop, solenoids, biot-savart law, voltage, voltage source, difference between e.m.f. and potential difference, ideal voltage sources, resistors, how current branches in a parallel circuit, capacitors, inductors, Faraday's law, inductance, ac circuits, transmission lines, Lorentz Force law, motors, generators, p-n junction diodes, electromagnetic waves, antennas and radiation, new electrodynamic theories on the nature of the electric field, see "Electric and Magnetic Interactions" by Chabay and Sherwood www.matterandinteractions.org or Fundamentals of electric theory and circuits by Sridhar Chitta www.wileyindia.com/fundamentals-of-electric-theory-and-circuits.html There is a "look inside" feature in the amazon.com webpage of the book "Fundamentals of electric theory and circuits" by Sridhar Chitta with a few pages of Chapter 1 which may be viewed and also which you may swipe left or press < icon to view the foreword, preface and Table of Contents. The contents of the above book by Sridhar Chitta, make a distinct unified approach to electrostatics and a few advanced circuits like coupling signals to amplifiers, lending precision and clarity to the topics which is not found in most text books. The book comes alongwith a CD with animated power point presentations for all chapters and voltage regulator, RC phase shift oscillators and differential amplifiers included additionally. For a lecture by Prof Ruth Chabay on surface charge in a simple dc circuit visit ruclips.net/video/-7W294N_Hkk/видео.html There is a full set of lectures beginning lecture 13 here on surface charges, electric fields, simple circuits, capacitance, inductance, faraday's law, motional emf, magnetic forces and more topics here matterandinteractions.org/videos/EM.html
I'm trying to understand this from a real world perspective and I'm getting confused at the part dealing with the battery being flipped to go from forward bias to reverse bias. I seem to be tripping on or misunderstanding a fundamental issue, but what external force would cause the battery polarity to be flipped ?
What is a pn junction ? A pn junction allows current in one direction only. It blocks current in the reverse direction. When a pn junction is formed, a potential barrier designated Vo comes into existence and is typically around 0.6 to 0.7 volts for silicon junctions. When the barrier whose Vo is 0.7 volts is disturbed by applying a forward bias of say, 0.6 volts, the current increases and the increase becomes steep for small increments of the forward bias value a little greater than 0.68 volts. Large currents are observed when the forward bias is 0.69 volts which is closer to the barrier voltage of 0.7 volts. The forward bias can never exceed the potential barrier voltage nor can it bring the barrier down to zero volts. That is the reason you seldom see current vs volt graphs of pn junction diodes beyond a volt or so. How does the bias remain less than the barrier in an operational diode? The voltage bias applied drops in the bulk neutral regions of the diode. The current in a forward bias adjusts to fulfill the conservation of current law and the rate of recombination. A detailed description of the pn junction with a distinct approach using surface charges, alignment of Fermi levels, creation of the barrier, the distinct processes of diffusion, drift, recombination and the influence of the electric field on the energies of electrons is provided in the following textbooks. Electrostatics and circuits belong to one science and not two, that of electricity and magnetism. To know how they are unified visit this link matterandinteractions.org/articles-talks/ and view the article 'A unified treatment of electrostatics and circuits. B. Sherwood and R. Chabay, unpublished. (1999)' pdf. For a live demonstration of surface charge and its effects in circuits visit ruclips.net/video/U7RLg-691eQ/видео.html For a detailed discussion of surface charge, coulomb's law, electric fields, fields of dipoles and other charge configurations, and parallel plates, and a distinct approach using the surface charge concept in the study of advanced topics of capacitance, currents, conservation of charge, conservation of current, superposition of fields, superposition of potential, simple dc circuit, magnetic fields, magnetic fields of a current element, straight wire, current loop, solenoids, biot-savart law, voltage, voltage source, difference between e.m.f. and potential difference, ideal voltage sources, resistors, how current branches in a parallel circuit, capacitors, inductors, Faraday's law, inductance, ac circuits, transmission lines, Lorentz Force law, motors, generators, p-n junction diodes, electromagnetic waves, antennas and radiation, new electrodynamic theories on the nature of the electric field, see "Electric and Magnetic Interactions" by Chabay and Sherwood www.matterandinteractions.org or Fundamentals of electric theory and circuits by Sridhar Chitta www.wileyindia.com/fundamentals-of-electric-theory-and-circuits.html There is a "look inside" feature in the amazon.com webpage of the book "Fundamentals of electric theory and circuits" by Sridhar Chitta with a few pages of Chapter 1 which may be viewed and also which you may swipe left or press < icon to view the foreword, preface and Table of Contents. The contents of the above book by Sridhar Chitta, make a distinct unified approach to electrostatics and a few advanced circuits like coupling signals to amplifiers, lending precision and clarity to the topics which is not found in most text books. The book comes alongwith a CD with animated power point presentations for all chapters and voltage regulator, RC phase shift oscillators and differential amplifiers included additionally. For a lecture by Prof Ruth Chabay on surface charge in a simple dc circuit visit ruclips.net/video/-7W294N_Hkk/видео.html There is a full set of lectures beginning lecture 13 here on surface charges, electric fields, simple circuits, capacitance, inductance, faraday's law, motional emf, magnetic forces and more topics here matterandinteractions.org/videos/EM.html
What external force ? How about the voltage was not a battery but instead ab Alternator ? What if you removed the diode and replaced it the other way round ?
In the depletion layer Some electrons migrate from p - type but Y it does not moves further in n-type and y the hole created in n-type cant attract further electrons
What is a pn junction ? A pn junction allows current in one direction only. It blocks current in the reverse direction. When a pn junction is formed, a potential barrier designated Vo comes into existence and is typically around 0.6 to 0.7 volts for silicon junctions. When the barrier whose Vo is 0.7 volts is disturbed by applying a forward bias of say, 0.6 volts, the current increases and the increase becomes steep for small increments of the forward bias value a little greater than 0.68 volts. Large currents are observed when the forward bias is 0.69 volts which is closer to the barrier voltage of 0.7 volts. The forward bias can never exceed the potential barrier voltage nor can it bring the barrier down to zero volts. That is the reason you seldom see current vs volt graphs of pn junction diodes beyond a volt or so. How does the bias remain less than the barrier in an operational diode? The voltage bias applied drops in the bulk neutral regions of the diode. The current in a forward bias adjusts to fulfill the conservation of current law and the rate of recombination. A detailed description of the pn junction with a distinct approach using surface charges, alignment of Fermi levels, creation of the barrier, the distinct processes of diffusion, drift, recombination and the influence of the electric field on the energies of electrons is provided in the following textbooks. Electrostatics and circuits belong to one science and not two, that of electricity and magnetism. To know how they are unified visit this link matterandinteractions.org/articles-talks/ and view the article 'A unified treatment of electrostatics and circuits. B. Sherwood and R. Chabay, unpublished. (1999)' pdf. For a live demonstration of surface charge and its effects in circuits visit ruclips.net/video/U7RLg-691eQ/видео.html For a detailed discussion of surface charge, coulomb's law, electric fields, fields of dipoles and other charge configurations, and parallel plates, and a distinct approach using the surface charge concept in the study of advanced topics of capacitance, currents, conservation of charge, conservation of current, superposition of fields, superposition of potential, simple dc circuit, magnetic fields, magnetic fields of a current element, straight wire, current loop, solenoids, biot-savart law, voltage, voltage source, difference between e.m.f. and potential difference, ideal voltage sources, resistors, how current branches in a parallel circuit, capacitors, inductors, Faraday's law, inductance, ac circuits, transmission lines, Lorentz Force law, motors, generators, p-n junction diodes, electromagnetic waves, antennas and radiation, new electrodynamic theories on the nature of the electric field, see "Electric and Magnetic Interactions" by Chabay and Sherwood www.matterandinteractions.org or Fundamentals of electric theory and circuits by Sridhar Chitta www.wileyindia.com/fundamentals-of-electric-theory-and-circuits.html There is a "look inside" feature in the amazon.com webpage of the book "Fundamentals of electric theory and circuits" by Sridhar Chitta with a few pages of Chapter 1 which may be viewed and also which you may swipe left or press < icon to view the foreword, preface and Table of Contents. The contents of the above book by Sridhar Chitta, make a distinct unified approach to electrostatics and a few advanced circuits like coupling signals to amplifiers, lending precision and clarity to the topics which is not found in most text books. The book comes alongwith a CD with animated power point presentations for all chapters and voltage regulator, RC phase shift oscillators and differential amplifiers included additionally. For a lecture by Prof Ruth Chabay on surface charge in a simple dc circuit visit ruclips.net/video/-7W294N_Hkk/видео.html There is a full set of lectures beginning lecture 13 here on surface charges, electric fields, simple circuits, capacitance, inductance, faraday's law, motional emf, magnetic forces and more topics here matterandinteractions.org/videos/EM.html
The barrier potential can never be made zero nor can it be made to disappear. For more details refer to the books indicated below. Your video otherwise is nicely made. What is a pn junction ? A pn junction allows current in one direction only. It blocks current in the reverse direction. When a pn junction is formed, a potential barrier designated Vo comes into existence and is typically around 0.6 to 0.7 volts for silicon junctions. When the barrier whose Vo is 0.7 volts is disturbed by applying a forward bias of say, 0.6 volts, the current increases and the increase becomes steep for small increments of the forward bias value a little greater than 0.68 volts. Large currents are observed when the forward bias is 0.69 volts which is closer to the barrier voltage of 0.7 volts. The forward bias can never exceed the potential barrier voltage nor can it bring the barrier down to zero volts. That is the reason you seldom see current vs volt graphs of pn junction diodes beyond a volt or so. How does the bias remain less than the barrier in an operational diode? The voltage bias applied drops in the bulk neutral regions of the diode. The current in a forward bias adjusts to fulfill the conservation of current law and the rate of recombination. A detailed description of the pn junction with a distinct approach using surface charges, alignment of Fermi levels, creation of the barrier, the distinct processes of diffusion, drift, recombination and the influence of the electric field on the energies of electrons is provided in the following textbooks. Electrostatics and circuits belong to one science and not two, that of electricity and magnetism. To know how they are unified visit this link matterandinteractions.org/articles-talks/ and view the article 'A unified treatment of electrostatics and circuits. B. Sherwood and R. Chabay, unpublished. (1999)' pdf. For a live demonstration of surface charge and its effects in circuits visit ruclips.net/video/U7RLg-691eQ/видео.html For a detailed discussion of surface charge, coulomb's law, electric fields, fields of dipoles and other charge configurations, and parallel plates, and a distinct approach using the surface charge concept in the study of advanced topics of capacitance, currents, conservation of charge, conservation of current, superposition of fields, superposition of potential, simple dc circuit, magnetic fields, magnetic fields of a current element, straight wire, current loop, solenoids, biot-savart law, voltage, voltage source, difference between e.m.f. and potential difference, ideal voltage sources, resistors, how current branches in a parallel circuit, capacitors, inductors, Faraday's law, inductance, ac circuits, transmission lines, Lorentz Force law, motors, generators, p-n junction diodes, electromagnetic waves, antennas and radiation, new electrodynamic theories on the nature of the electric field, see "Electric and Magnetic Interactions" by Chabay and Sherwood www.matterandinteractions.org or Fundamentals of electric theory and circuits by Sridhar Chitta www.wileyindia.com/fundamentals-of-electric-theory-and-circuits.html There is a "look inside" feature in the amazon.com webpage of the book "Fundamentals of electric theory and circuits" by Sridhar Chitta with a few pages of Chapter 1 which may be viewed and also which you may swipe left or press < icon to view the foreword, preface and Table of Contents. The contents of the above book by Sridhar Chitta, make a distinct unified approach to electrostatics and a few advanced circuits like coupling signals to amplifiers, lending precision and clarity to the topics which is not found in most text books. The book comes alongwith a CD with animated power point presentations for all chapters and voltage regulator, RC phase shift oscillators and differential amplifiers included additionally. For a lecture by Prof Ruth Chabay on surface charge in a simple dc circuit visit ruclips.net/video/-7W294N_Hkk/видео.html There is a full set of lectures beginning lecture 13 here on surface charges, electric fields, simple circuits, capacitance, inductance, faraday's law, motional emf, magnetic forces and more topics here matterandinteractions.org/videos/EM.html
The barrier potential of an operational diode can never be made zero. What is a pn junction ? A pn junction allows current in one direction only. It blocks current in the reverse direction. When a pn junction is formed, a potential barrier designated Vo comes into existence and is typically around 0.6 to 0.7 volts for silicon junctions. When the barrier whose Vo is 0.7 volts is disturbed by applying a forward bias of say, 0.6 volts, the current increases and the increase becomes steep for small increments of the forward bias value a little greater than 0.68 volts. Large currents are observed when the forward bias is 0.69 volts which is closer to the barrier voltage of 0.7 volts. The forward bias can never exceed the potential barrier voltage nor can it bring the barrier down to zero volts. That is the reason you seldom see current vs volt graphs of pn junction diodes beyond a volt or so. How does the bias remain less than the barrier in an operational diode? The voltage bias applied drops in the bulk neutral regions of the diode. A detailed description of the pn junction with a distinct approach using surface charges, alignment of Fermi levels, creation of the barrier, the distinct processes of diffusion, drift, recombination and the influence of the electric field on the energies of electrons is provided in the following textbooks. Electrostatics and circuits belong to one science and not two, that of electricity and magnetism. To know how they are unified visit this link matterandinteractions.org/articles-talks/ and view the article 'A unified treatment of electrostatics and circuits. B. Sherwood and R. Chabay, unpublished. (1999)' pdf. For a live demonstration of surface charge and its effects in circuits visit ruclips.net/video/U7RLg-691eQ/видео.html For a detailed discussion of surface charge, coulomb's law, electric fields, fields of dipoles and other charge configurations, parallel plates, capacitance, currents, conservation of charge, conservation of current, superposition of fields, superposition of potential, simple dc circuit, magnetic fields, magnetic fields of a current element, straight wire, current loop, solenoids, biot-savart law, voltage, voltage source, difference between e.m.f. and potential difference, ideal voltage sources, resistors, how current branches in a parallel circuit, capacitors, inductors, faraday's law, inductance, ac circuits, transmission lines, motors, generators, p-n junction diodes, electromagnetic waves, antennas and radiation, new electrodynamic theories on the nature of the electric field, see "Electric and Magnetic Interactions" by Chabay and Sherwood www.matterandinteractions.org or Fundamentals of electric theory and circuits by Sridhar Chitta www.wileyindia.com/fundamentals-of-electric-theory-and-circuits.html There is a "look inside" feature in the amazon.com webpage of the book "Fundamentals of electric theory and circuits" by Sridhar Chitta with a few pages of Chapter 1 which may be viewed and also which you may swipe left or press < icon to view the foreword, preface and Table of Contents. The contents of the above book by Sridhar Chitta, make a distinct unified approach to electrostatics and a few advanced circuits like coupling signals to amplifiers, lending precision and clarity to the topics which is not found in most text books. The book comes alongwith a CD with animated power point presentations for all chapters and voltage regulator, RC phase shift oscillators and differential amplifiers included additionally. For a lecture by Prof Ruth Chabay on surface charge in a simple dc circuit visit ruclips.net/video/-7W294N_Hkk/видео.html
great information. however i would prefer a crude hand drawing rather than a marker in hand waving across the screen at rapid speeds "drawing" something unrelated to the movement.
Both! Here is a video on transistors as a switch: ruclips.net/video/UIEGKvCfDOA/видео.html And here is an article on MOSFET as a switch: www.electrical4u.com/mosfet-as-a-switch/
positive ion - 5valent atom that let go of one of its electrons negative ion - 3valent atom that accepted one electron these ions make up the depletion region
No diode is "ideal". So its hard to say why the woman says it is. All diodes need a forward voltage above a curvy kind of ammount to start to let current through. Silicon c0.6v GaAs (LED light) white are nearly 3v ! - but might be Aluminum Nitride which gives UV light (I'm told) which then makes a phosphor glow with visible light.
Thank you for watching!
If you want to learn more about diodes, you can read our full article at: www.electrical4u.com/diode-working-principle-and-types-of-diode/
Thank you for the upload
I don't think viewers fully comprehend how important your vid really is. It literally defines every technical term used in semiconductor physics. It is very well done! Most YT vids don't use or understand this terminology. Awesome.
This is really helpful... Thanks for it❤️
You have so nicely explained working of diod that even a young child will clearly understand. Your lecture is of utmost quality. You are having gift of gabs
No worries at all! Thank you for your kind words Nana, I'm glad you found it useful 🤓
These are very helpful.we want more vedios sir
Great explanation!!!!
Best explaination on yt
Thank you so much for your kind words Haseeb! Very happy to hear you like the video :)
This video is easier to understand for a beginner about working principle of diode . Thank a lot
What is a pn junction ?
A pn junction allows current in one direction only. It blocks current in the reverse direction.
When a pn junction is formed, a potential barrier designated Vo comes into existence and is typically around 0.6 to 0.7 volts for silicon junctions.
When the barrier whose Vo is 0.7 volts is disturbed by applying a forward bias of say, 0.6 volts, the current increases and the increase becomes steep for small increments of the forward bias value a little greater than 0.68 volts. Large currents are observed when the forward bias is 0.69 volts which is closer to the barrier voltage of 0.7 volts.
The forward bias can never exceed the potential barrier voltage nor can it bring the barrier down to zero volts. That is the reason you seldom see current vs volt graphs of pn junction diodes beyond a volt or so.
How does the bias remain less than the barrier in an operational diode?
The voltage bias applied drops in the bulk neutral regions of the diode.
The current in a forward bias adjusts to fulfill the conservation of current law and the rate of recombination.
A detailed description of the pn junction with a distinct approach using surface charges, alignment of Fermi levels, creation of the barrier, the distinct processes of diffusion, drift, recombination and the influence of the electric field on the energies of electrons is provided in the following textbooks.
Electrostatics and circuits belong to one science and not two, that of electricity and magnetism. To know how they are unified visit this link
matterandinteractions.org/articles-talks/ and view the article 'A unified treatment of electrostatics and circuits. B. Sherwood and R. Chabay, unpublished. (1999)'
pdf.
For a live demonstration of surface charge and its effects in circuits visit
ruclips.net/video/U7RLg-691eQ/видео.html
For a detailed discussion of surface charge, coulomb's law, electric fields, fields of dipoles and other charge configurations, and parallel plates, and a distinct approach using the surface charge concept in the study of advanced topics of capacitance, currents, conservation of charge, conservation of current, superposition of fields, superposition of potential, simple dc circuit, magnetic fields, magnetic fields of a current element, straight wire, current loop, solenoids, biot-savart law, voltage, voltage source, difference between e.m.f. and potential difference, ideal voltage sources, resistors, how current branches in a parallel circuit, capacitors, inductors, Faraday's law, inductance, ac circuits, transmission lines, Lorentz Force law, motors, generators, p-n junction diodes, electromagnetic waves, antennas and radiation, new electrodynamic theories on the nature of the electric field, see "Electric and Magnetic Interactions" by Chabay and Sherwood
www.matterandinteractions.org
or
Fundamentals of electric theory and circuits by Sridhar Chitta
www.wileyindia.com/fundamentals-of-electric-theory-and-circuits.html
There is a "look inside" feature in the amazon.com webpage of the book "Fundamentals of electric theory and circuits" by Sridhar Chitta with a few pages of Chapter 1 which may be viewed and also which you may swipe left or press < icon to view the foreword, preface and Table of Contents. The contents of the above book by Sridhar Chitta, make a distinct unified approach to electrostatics and a few advanced circuits like coupling signals to amplifiers, lending precision and clarity to the topics which is not found in most text books.
The book comes alongwith a CD with animated power point presentations for all chapters and voltage regulator, RC phase shift oscillators and differential amplifiers included additionally.
For a lecture by Prof Ruth Chabay on surface charge in a simple dc circuit visit
ruclips.net/video/-7W294N_Hkk/видео.html
There is a full set of lectures beginning lecture 13 here on surface charges, electric fields, simple circuits, capacitance, inductance, faraday's law, motional emf, magnetic forces and more topics here
matterandinteractions.org/videos/EM.html
Clear explanation 👍
Happy to hear you liked it Vinod! :)
I'm trying to understand this from a real world perspective and I'm getting confused at the part dealing with the battery being flipped to go from forward bias to reverse bias. I seem to be tripping on or misunderstanding a fundamental issue, but what external force would cause the battery polarity to be flipped ?
What is a pn junction ?
A pn junction allows current in one direction only. It blocks current in the reverse direction.
When a pn junction is formed, a potential barrier designated Vo comes into existence and is typically around 0.6 to 0.7 volts for silicon junctions.
When the barrier whose Vo is 0.7 volts is disturbed by applying a forward bias of say, 0.6 volts, the current increases and the increase becomes steep for small increments of the forward bias value a little greater than 0.68 volts. Large currents are observed when the forward bias is 0.69 volts which is closer to the barrier voltage of 0.7 volts.
The forward bias can never exceed the potential barrier voltage nor can it bring the barrier down to zero volts. That is the reason you seldom see current vs volt graphs of pn junction diodes beyond a volt or so.
How does the bias remain less than the barrier in an operational diode?
The voltage bias applied drops in the bulk neutral regions of the diode.
The current in a forward bias adjusts to fulfill the conservation of current law and the rate of recombination.
A detailed description of the pn junction with a distinct approach using surface charges, alignment of Fermi levels, creation of the barrier, the distinct processes of diffusion, drift, recombination and the influence of the electric field on the energies of electrons is provided in the following textbooks.
Electrostatics and circuits belong to one science and not two, that of electricity and magnetism. To know how they are unified visit this link
matterandinteractions.org/articles-talks/ and view the article 'A unified treatment of electrostatics and circuits. B. Sherwood and R. Chabay, unpublished. (1999)'
pdf.
For a live demonstration of surface charge and its effects in circuits visit
ruclips.net/video/U7RLg-691eQ/видео.html
For a detailed discussion of surface charge, coulomb's law, electric fields, fields of dipoles and other charge configurations, and parallel plates, and a distinct approach using the surface charge concept in the study of advanced topics of capacitance, currents, conservation of charge, conservation of current, superposition of fields, superposition of potential, simple dc circuit, magnetic fields, magnetic fields of a current element, straight wire, current loop, solenoids, biot-savart law, voltage, voltage source, difference between e.m.f. and potential difference, ideal voltage sources, resistors, how current branches in a parallel circuit, capacitors, inductors, Faraday's law, inductance, ac circuits, transmission lines, Lorentz Force law, motors, generators, p-n junction diodes, electromagnetic waves, antennas and radiation, new electrodynamic theories on the nature of the electric field, see "Electric and Magnetic Interactions" by Chabay and Sherwood
www.matterandinteractions.org
or
Fundamentals of electric theory and circuits by Sridhar Chitta
www.wileyindia.com/fundamentals-of-electric-theory-and-circuits.html
There is a "look inside" feature in the amazon.com webpage of the book "Fundamentals of electric theory and circuits" by Sridhar Chitta with a few pages of Chapter 1 which may be viewed and also which you may swipe left or press < icon to view the foreword, preface and Table of Contents. The contents of the above book by Sridhar Chitta, make a distinct unified approach to electrostatics and a few advanced circuits like coupling signals to amplifiers, lending precision and clarity to the topics which is not found in most text books.
The book comes alongwith a CD with animated power point presentations for all chapters and voltage regulator, RC phase shift oscillators and differential amplifiers included additionally.
For a lecture by Prof Ruth Chabay on surface charge in a simple dc circuit visit
ruclips.net/video/-7W294N_Hkk/видео.html
There is a full set of lectures beginning lecture 13 here on surface charges, electric fields, simple circuits, capacitance, inductance, faraday's law, motional emf, magnetic forces and more topics here
matterandinteractions.org/videos/EM.html
What external force ? How about the voltage was not a battery but instead ab Alternator ? What if you removed the diode and replaced it the other way round ?
Awesome video got my concepts Crystal clear!!!!!
Happy to hear - thank you for watching! :)
Great Explanation, Thanks A lot
Good explanation
In the depletion layer
Some electrons migrate from p - type but Y it does not moves further in n-type and y the hole created in n-type cant attract further electrons
What is a pn junction ?
A pn junction allows current in one direction only. It blocks current in the reverse direction.
When a pn junction is formed, a potential barrier designated Vo comes into existence and is typically around 0.6 to 0.7 volts for silicon junctions.
When the barrier whose Vo is 0.7 volts is disturbed by applying a forward bias of say, 0.6 volts, the current increases and the increase becomes steep for small increments of the forward bias value a little greater than 0.68 volts. Large currents are observed when the forward bias is 0.69 volts which is closer to the barrier voltage of 0.7 volts.
The forward bias can never exceed the potential barrier voltage nor can it bring the barrier down to zero volts. That is the reason you seldom see current vs volt graphs of pn junction diodes beyond a volt or so.
How does the bias remain less than the barrier in an operational diode?
The voltage bias applied drops in the bulk neutral regions of the diode.
The current in a forward bias adjusts to fulfill the conservation of current law and the rate of recombination.
A detailed description of the pn junction with a distinct approach using surface charges, alignment of Fermi levels, creation of the barrier, the distinct processes of diffusion, drift, recombination and the influence of the electric field on the energies of electrons is provided in the following textbooks.
Electrostatics and circuits belong to one science and not two, that of electricity and magnetism. To know how they are unified visit this link
matterandinteractions.org/articles-talks/ and view the article 'A unified treatment of electrostatics and circuits. B. Sherwood and R. Chabay, unpublished. (1999)'
pdf.
For a live demonstration of surface charge and its effects in circuits visit
ruclips.net/video/U7RLg-691eQ/видео.html
For a detailed discussion of surface charge, coulomb's law, electric fields, fields of dipoles and other charge configurations, and parallel plates, and a distinct approach using the surface charge concept in the study of advanced topics of capacitance, currents, conservation of charge, conservation of current, superposition of fields, superposition of potential, simple dc circuit, magnetic fields, magnetic fields of a current element, straight wire, current loop, solenoids, biot-savart law, voltage, voltage source, difference between e.m.f. and potential difference, ideal voltage sources, resistors, how current branches in a parallel circuit, capacitors, inductors, Faraday's law, inductance, ac circuits, transmission lines, Lorentz Force law, motors, generators, p-n junction diodes, electromagnetic waves, antennas and radiation, new electrodynamic theories on the nature of the electric field, see "Electric and Magnetic Interactions" by Chabay and Sherwood
www.matterandinteractions.org
or
Fundamentals of electric theory and circuits by Sridhar Chitta
www.wileyindia.com/fundamentals-of-electric-theory-and-circuits.html
There is a "look inside" feature in the amazon.com webpage of the book "Fundamentals of electric theory and circuits" by Sridhar Chitta with a few pages of Chapter 1 which may be viewed and also which you may swipe left or press < icon to view the foreword, preface and Table of Contents. The contents of the above book by Sridhar Chitta, make a distinct unified approach to electrostatics and a few advanced circuits like coupling signals to amplifiers, lending precision and clarity to the topics which is not found in most text books.
The book comes alongwith a CD with animated power point presentations for all chapters and voltage regulator, RC phase shift oscillators and differential amplifiers included additionally.
For a lecture by Prof Ruth Chabay on surface charge in a simple dc circuit visit
ruclips.net/video/-7W294N_Hkk/видео.html
There is a full set of lectures beginning lecture 13 here on surface charges, electric fields, simple circuits, capacitance, inductance, faraday's law, motional emf, magnetic forces and more topics here
matterandinteractions.org/videos/EM.html
It is great, Indeed regarding diodes.
No words ......🤗🤗🤗🤗🤗🤗🤗🤗🤗🤗🤗🤗🤗🤗🤗🤗🤗🤗
Informative!
very helpful 👍
Happy to hear!
The barrier potential can never be made zero nor can it be made to disappear. For more details refer to the books indicated below.
Your video otherwise is nicely made.
What is a pn junction ?
A pn junction allows current in one direction only. It blocks current in the reverse direction.
When a pn junction is formed, a potential barrier designated Vo comes into existence and is typically around 0.6 to 0.7 volts for silicon junctions.
When the barrier whose Vo is 0.7 volts is disturbed by applying a forward bias of say, 0.6 volts, the current increases and the increase becomes steep for small increments of the forward bias value a little greater than 0.68 volts. Large currents are observed when the forward bias is 0.69 volts which is closer to the barrier voltage of 0.7 volts.
The forward bias can never exceed the potential barrier voltage nor can it bring the barrier down to zero volts. That is the reason you seldom see current vs volt graphs of pn junction diodes beyond a volt or so.
How does the bias remain less than the barrier in an operational diode?
The voltage bias applied drops in the bulk neutral regions of the diode.
The current in a forward bias adjusts to fulfill the conservation of current law and the rate of recombination.
A detailed description of the pn junction with a distinct approach using surface charges, alignment of Fermi levels, creation of the barrier, the distinct processes of diffusion, drift, recombination and the influence of the electric field on the energies of electrons is provided in the following textbooks.
Electrostatics and circuits belong to one science and not two, that of electricity and magnetism. To know how they are unified visit this link
matterandinteractions.org/articles-talks/ and view the article 'A unified treatment of electrostatics and circuits. B. Sherwood and R. Chabay, unpublished. (1999)'
pdf.
For a live demonstration of surface charge and its effects in circuits visit
ruclips.net/video/U7RLg-691eQ/видео.html
For a detailed discussion of surface charge, coulomb's law, electric fields, fields of dipoles and other charge configurations, and parallel plates, and a distinct approach using the surface charge concept in the study of advanced topics of capacitance, currents, conservation of charge, conservation of current, superposition of fields, superposition of potential, simple dc circuit, magnetic fields, magnetic fields of a current element, straight wire, current loop, solenoids, biot-savart law, voltage, voltage source, difference between e.m.f. and potential difference, ideal voltage sources, resistors, how current branches in a parallel circuit, capacitors, inductors, Faraday's law, inductance, ac circuits, transmission lines, Lorentz Force law, motors, generators, p-n junction diodes, electromagnetic waves, antennas and radiation, new electrodynamic theories on the nature of the electric field, see "Electric and Magnetic Interactions" by Chabay and Sherwood
www.matterandinteractions.org
or
Fundamentals of electric theory and circuits by Sridhar Chitta
www.wileyindia.com/fundamentals-of-electric-theory-and-circuits.html
There is a "look inside" feature in the amazon.com webpage of the book "Fundamentals of electric theory and circuits" by Sridhar Chitta with a few pages of Chapter 1 which may be viewed and also which you may swipe left or press < icon to view the foreword, preface and Table of Contents. The contents of the above book by Sridhar Chitta, make a distinct unified approach to electrostatics and a few advanced circuits like coupling signals to amplifiers, lending precision and clarity to the topics which is not found in most text books.
The book comes alongwith a CD with animated power point presentations for all chapters and voltage regulator, RC phase shift oscillators and differential amplifiers included additionally.
For a lecture by Prof Ruth Chabay on surface charge in a simple dc circuit visit
ruclips.net/video/-7W294N_Hkk/видео.html
There is a full set of lectures beginning lecture 13 here on surface charges, electric fields, simple circuits, capacitance, inductance, faraday's law, motional emf, magnetic forces and more topics here
matterandinteractions.org/videos/EM.html
Awesome...👌👌
Thank you Akki! :)
Super helpful a lot
Happy to hear Divakar 🙂
excellent video
The barrier potential of an operational diode can never be made zero.
What is a pn junction ?
A pn junction allows current in one direction only. It blocks current in the reverse direction.
When a pn junction is formed, a potential barrier designated Vo comes into existence and is typically around 0.6 to 0.7 volts for silicon junctions.
When the barrier whose Vo is 0.7 volts is disturbed by applying a forward bias of say, 0.6 volts, the current increases and the increase becomes steep for small increments of the forward bias value a little greater than 0.68 volts. Large currents are observed when the forward bias is 0.69 volts which is closer to the barrier voltage of 0.7 volts.
The forward bias can never exceed the potential barrier voltage nor can it bring the barrier down to zero volts. That is the reason you seldom see current vs volt graphs of pn junction diodes beyond a volt or so.
How does the bias remain less than the barrier in an operational diode?
The voltage bias applied drops in the bulk neutral regions of the diode.
A detailed description of the pn junction with a distinct approach using surface charges, alignment of Fermi levels, creation of the barrier, the distinct processes of diffusion, drift, recombination and the influence of the electric field on the energies of electrons is provided in the following textbooks.
Electrostatics and circuits belong to one science and not two, that of electricity and magnetism. To know how they are unified visit this link
matterandinteractions.org/articles-talks/ and view the article 'A unified treatment of electrostatics and circuits. B. Sherwood and R. Chabay, unpublished. (1999)'
pdf.
For a live demonstration of surface charge and its effects in circuits visit
ruclips.net/video/U7RLg-691eQ/видео.html
For a detailed discussion of surface charge, coulomb's law, electric fields, fields of dipoles and other charge configurations, parallel plates, capacitance, currents, conservation of charge, conservation of current, superposition of fields, superposition of potential, simple dc circuit, magnetic fields, magnetic fields of a current element, straight wire, current loop, solenoids, biot-savart law, voltage, voltage source, difference between e.m.f. and potential difference, ideal voltage sources, resistors, how current branches in a parallel circuit, capacitors, inductors, faraday's law, inductance, ac circuits, transmission lines, motors, generators, p-n junction diodes, electromagnetic waves, antennas and radiation, new electrodynamic theories on the nature of the electric field, see "Electric and Magnetic Interactions" by Chabay and Sherwood
www.matterandinteractions.org
or
Fundamentals of electric theory and circuits by Sridhar Chitta
www.wileyindia.com/fundamentals-of-electric-theory-and-circuits.html
There is a "look inside" feature in the amazon.com webpage of the book "Fundamentals of electric theory and circuits" by Sridhar Chitta with a few pages of Chapter 1 which may be viewed and also which you may swipe left or press < icon to view the foreword, preface and Table of Contents. The contents of the above book by Sridhar Chitta, make a distinct unified approach to electrostatics and a few advanced circuits like coupling signals to amplifiers, lending precision and clarity to the topics which is not found in most text books.
The book comes alongwith a CD with animated power point presentations for all chapters and voltage regulator, RC phase shift oscillators and differential amplifiers included additionally.
For a lecture by Prof Ruth Chabay on surface charge in a simple dc circuit visit
ruclips.net/video/-7W294N_Hkk/видео.html
great information.
however i would prefer a crude hand drawing rather than a marker in hand waving across the screen at rapid speeds "drawing" something unrelated to the movement.
Thank u so much❤️
Can any one tell me how to make this type of animation video please replay or tell me the app name
Very much thanks
Diode or transistor which one act as a switch??
Chandraprakash K Both
Both!
Here is a video on transistors as a switch: ruclips.net/video/UIEGKvCfDOA/видео.html
And here is an article on MOSFET as a switch: www.electrical4u.com/mosfet-as-a-switch/
it is so useful but pls add subtitle too for non english speaker. it will be easier. thx
News
- happy
It is very helpfull to me thk
Why did you start calling free electrons and holes, negative and positive ions? What's the difference?
positive ion - 5valent atom that let go of one of its electrons
negative ion - 3valent atom that accepted one electron
these ions make up the depletion region
Bro there is one hand whose writing. Which app this is
Thank You
No worries! :)
Is there any material that have property of only n type
Mam use AC Power source
thanks
Transistor should be explained in general
thank u
No problem Dakshina!
Good
awesome
Thank you Nahashon!
Awesome
Yes electrons
Superr
Thank you Chinni! :)
And yet current flows in the opposite direction,they still teaching "conventional" current flow direction. Why?
No diode is "ideal". So its hard to say why the woman says it is. All diodes need a forward voltage above a curvy kind of ammount to start to let current through. Silicon c0.6v GaAs (LED light) white are nearly 3v ! - but might be Aluminum Nitride which gives UV light (I'm told) which then makes a phosphor glow with visible light.
tnx
Great video but the hand is so annoying
the video is soo slow.
Thank you for the feedback Manasi. We will make sure to increase our video speed in future 🙂
Thank you
Thank you