Великолепный урок.Благодаря вам впервые ощутил себя человеком,который способен решить хоть что-то из курса высшей математики и не почувствовать себя на фоне своих одногруппников - тупым.Спасибо!
Здравствуйте! В моем университете просят сделать небольшой проект в среде питон и эксель по методам решений СЛАУ ( конкретно метод Якоби, Гаусса - Зейделя). Можно ли повзаимствовать у Вас данный файл в экселе и питоне?🙏🙏 Буду Вам безмерно признателен!!
Спасибо за видео. Возник вопрос. Почему не используем текущую итерацию в методе релаксации. Зачем допустим Зейделевское X1 при вычислении X2 если мы уже получили текущие приближение X1 по релаксации?
В принципе можно использовать и новое значение х1 для вычисления приближения х2. Попробовал так сделать для моего примера, получилось, что количество итераций или не изменилось или увеличилось на одну. Не буду утверждать, что это будет так для всех систем уравнений. Просто попробовал на одном примере из видео. В целом ваше предложение вполне логичное, может для каких-то систем уравнений это дало бы эффект.
Здравствуйте! Можете пожалуйста подсказать, как можно реализовать метод Ньютона (метод касательных) для решения нелинейных уравнений в Python? Буду очень благодарна Вам!
Здравствуйте. Метод Ньютона - это цикл while. В цикле выполняется вычисление очередного приближения корня и проверяется условие останова. Нужно предусмотреть ситуацию, когда вычисления расходятся, в методе Ньютона это возможно. Кстати, у меня есть видеоурок по этим методам, посмотрите.
Посмотрел еще раз и не обнаружил ошибки. В ячейке, где считается x2(k+1) написана формула =$K$42*K47+(1-$K$42)*N46. В этой формуле ячейка K47 - это x2(k+1), найденное по методу Зейделя, а ячейка N46 - это значение x2(k) с прошлого шага расчета, $K$42 - это коэффициент омега. Вроде бы все именно так, как и планировалось.
Не стоит ли перед расчетом, проверить матрицу А? Найти ее определитель или ранг? Может там решения и нет. По поводу условия отстановки расчетов. Максимальаня ошщибка по Х это понятно, но ведь задачи найти решение системы, а не повторяемость Х, не важнее ли рассмотреть именно отклонение В исходных и расчитнаых с помощью полученных Х?
По вашим вопросам. Проверить матрицу А перед решением вполне можно, почему бы и нет. По второму вопросу - в целом да, согласен. Наверное критерий близости левой и правой частей уравнений был бы более правильный с точки зрения точности полученного решения.
Благодарю за положительный отзыв! Поймите меня правильно. Это преподавательский контент, и студентам дано подобное задание. В данном случае я не размещаю файл с решением, чтобы слишком не облегчать задачу студентам.
Здравствуйте. Спасибо за лекцию. А результаты в конце видео по поводу сходимости методов +- одинаковые как для уравнений из 3-ех переменных, так и для уравнений из 1млн переменных?
Здравствуйте. На этот счёт не могу точно сказать. Не проводил исследований для большого числа переменных. Понятно одно, чем ближе выполняется условие сходимости, тем лучше будет система сходиться. Если мы берём систему со случайными коэффициентами, то думаю, что система на 1 млн уравнений вряд ли сойдется этими методами.
Да, все верно. Сначала определяется, какой порядок уравнений будет наилучшим (наибольшее диагональное преобладание), а затем уравнения переставляются местами.
Но ведь не для всех систем достаточно перестановки только строк для обеспечения диагонального преобладания. В то же время алгоритм приведения любой матрицы к матрице с диагональным преобладанием посредством её тождественных преобразований я найти не могу (есть вариант использовать метод Жордана-Гаусса, но темы наших работ (итерационные методы решения СЛАУ) исключают всякое использование точных методов).
Согласен с вами, что перестановка уравнений в системе подходит не для всех систем уравнений. Кстати, об этом говорят и результаты тестов, где рассмотренные методы не дали 100%-й сходимости. Если перестановка уравнений не дает эффекта, то остается вариант использовать линейные преобразования, то есть по факту это метод Гаусса и его вариации. Может быть есть какие-то алгоритмы для обеспечения диагонального преобладания, но я таких не знаю. Уверен, что есть и другие чисто итерационные методы, у которых сходимость лучше, чем у представленных трех методов.
еще раз пересмотрел ваше видео и возник вопрос по поводу схождения различных методов. Разве преобладание главной диагонали не является достаточным условием для схождения ряда? Если так, то почему даже с достаточным условием, процент сходимости не приближен к 100? (в методах Якоби и Зейделя). Недостаточно оптимизированный код или я что-то упустил?
Преобладание главной диагонали - это достаточное условие сходимости для этих методов, все верно. Чтобы определить процент сходимости, я в программе задавал разные системы уравнений со случайными коэффициентами. Попадались разные системы уравнений: с диагональным преобладанием и без него. Поэтому сходились не все системы уравнений даже, когда пробовал переставлять уравнения местами.
Могли получится матрицы не имеющие решения, забыл ка кони называются - но ранг матрицы свободных коэффециентов у таких систем ниже чем размер матрицы (определитель будет равен нулю).
Спасибо большое за видео. Никак не получается написать программу, не могу найти функцию L, у вас она вроде в начале написана, где вы не показываете, можно будет как-то посмотреть?
Великолепный урок.Благодаря вам впервые ощутил себя человеком,который способен решить хоть что-то из курса высшей математики и не почувствовать себя на фоне своих одногруппников - тупым.Спасибо!
Большое спасибо! Очень наглядные объяснения, и, что радует, живые и практические.
Благодарю!
Очень полезное видео, по этой теме практически нет видео на русском сегменте ютуба, спасибо за видео
Рад помочь. Спасибо за отзыв!
спасибо вам!! через 7 часов экзамен по численным методам как раз :)
большущее спасибо за видео, понятнее в разы чем в учебнике
Рад помочь!
Спасибо за урок. Здоровья вам и вашим близким
Спасибо, видео крутое!!! Вообще все понятно стало!!! Автор красавчик!!!
Благодарю!
Подача 10/10
В шоке от того что можно делать в Excel
Можете выложить в описание файлик с кодом? Буду очень благодарен)
Из недостатков можно назвать лишь отсутствие ссылки на гитхаб или диск с кодом и листами экселя)
Урок очень хороший, всё понятно, спасибо за труд!
спасибо за видео - очень четко объясняете.
Спасибо за отзыв!
Спасибо большое!
спасибо большое за информацию, за исходник был бы очень благодарен
Спасибо большое за урок! Не могли бы вы показать полностью код? Не до конца понимаю некоторые функции((
если б скинули файл, вообще было бы супер
Здравствуйте! В моем университете просят сделать небольшой проект в среде питон и эксель по методам решений СЛАУ ( конкретно метод Якоби, Гаусса - Зейделя). Можно ли повзаимствовать у Вас данный файл в экселе и питоне?🙏🙏
Буду Вам безмерно признателен!!
Спасибо за видео. Возник вопрос. Почему не используем текущую итерацию в методе релаксации. Зачем допустим Зейделевское X1 при вычислении X2 если мы уже получили текущие приближение X1 по релаксации?
В принципе можно использовать и новое значение х1 для вычисления приближения х2. Попробовал так сделать для моего примера, получилось, что количество итераций или не изменилось или увеличилось на одну. Не буду утверждать, что это будет так для всех систем уравнений. Просто попробовал на одном примере из видео. В целом ваше предложение вполне логичное, может для каких-то систем уравнений это дало бы эффект.
Здравствуйте! Можете пожалуйста подсказать, как можно реализовать метод Ньютона (метод касательных) для решения нелинейных уравнений в Python? Буду очень благодарна Вам!
Здравствуйте. Метод Ньютона - это цикл while. В цикле выполняется вычисление очередного приближения корня и проверяется условие останова. Нужно предусмотреть ситуацию, когда вычисления расходятся, в методе Ньютона это возможно. Кстати, у меня есть видеоурок по этим методам, посмотрите.
@@learningmeansdoing Возможно прозвучит немного нагло с моей стороны, но мне код для Питона нужен))
В формуле смещения переменных(релаксации) ошибка: в строке с x2^(к+1) должна быть зависимость от x2^(к+1) и x2^(к)
Посмотрел еще раз и не обнаружил ошибки. В ячейке, где считается x2(k+1) написана формула =$K$42*K47+(1-$K$42)*N46. В этой формуле ячейка K47 - это x2(k+1), найденное по методу Зейделя, а ячейка N46 - это значение x2(k) с прошлого шага расчета, $K$42 - это коэффициент омега. Вроде бы все именно так, как и планировалось.
Не стоит ли перед расчетом, проверить матрицу А? Найти ее определитель или ранг? Может там решения и нет.
По поводу условия отстановки расчетов. Максимальаня ошщибка по Х это понятно, но ведь задачи найти решение системы, а не повторяемость Х, не важнее ли рассмотреть именно отклонение В исходных и расчитнаых с помощью полученных Х?
По вашим вопросам. Проверить матрицу А перед решением вполне можно, почему бы и нет. По второму вопросу - в целом да, согласен. Наверное критерий близости левой и правой частей уравнений был бы более правильный с точки зрения точности полученного решения.
Большое спасибо за видео! А возможно где-то скачать эту эксель таблицу, самому в ней покопаться?
Благодарю за положительный отзыв! Поймите меня правильно. Это преподавательский контент, и студентам дано подобное задание. В данном случае я не размещаю файл с решением, чтобы слишком не облегчать задачу студентам.
@@learningmeansdoing Понимаю, все равно спасибо
Здравствуйте. Спасибо за лекцию. А результаты в конце видео по поводу сходимости методов +- одинаковые как для уравнений из 3-ех переменных, так и для уравнений из 1млн переменных?
Здравствуйте. На этот счёт не могу точно сказать. Не проводил исследований для большого числа переменных. Понятно одно, чем ближе выполняется условие сходимости, тем лучше будет система сходиться. Если мы берём систему со случайными коэффициентами, то думаю, что система на 1 млн уравнений вряд ли сойдется этими методами.
Скажите пожалуйста, а можно как-то узнать что находится в функции error_calc() ? А то без нее невозможно запустить программу
Вот эта функция:
def error_calc(x, xn):
max_err = 0
for j in range(len(x)):
err = abs(x[j] - xn[j])
if err > max_err:
max_err = err
return max_err
@@learningmeansdoing Благодарю!
Спасибо большое за объяснение, всё очень понятно и доходчиво.
Можно ли получить данный excel документ для проверки своих решений?
Кырта берме
Мен ештене туснбедм
Не должно ли быть Ах-b=0?
Вроде Ax=b то же самое
@@learningmeansdoing да, то же самое
Но у вас в начале видео
В одном из методов написано Ax+b=0
Да, возможно есть некоторые неточности
В функции random_permutations() осуществляется только перестановка строк?
Да, все верно. Сначала определяется, какой порядок уравнений будет наилучшим (наибольшее диагональное преобладание), а затем уравнения переставляются местами.
Но ведь не для всех систем достаточно перестановки только строк для обеспечения диагонального преобладания. В то же время алгоритм приведения любой матрицы к матрице с диагональным преобладанием посредством её тождественных преобразований я найти не могу (есть вариант использовать метод Жордана-Гаусса, но темы наших работ (итерационные методы решения СЛАУ) исключают всякое использование точных методов).
Согласен с вами, что перестановка уравнений в системе подходит не для всех систем уравнений. Кстати, об этом говорят и результаты тестов, где рассмотренные методы не дали 100%-й сходимости. Если перестановка уравнений не дает эффекта, то остается вариант использовать линейные преобразования, то есть по факту это метод Гаусса и его вариации. Может быть есть какие-то алгоритмы для обеспечения диагонального преобладания, но я таких не знаю. Уверен, что есть и другие чисто итерационные методы, у которых сходимость лучше, чем у представленных трех методов.
Пожалуйста, можете скинуть этот файл мне?
еще раз пересмотрел ваше видео и возник вопрос по поводу схождения различных методов.
Разве преобладание главной диагонали не является достаточным условием для схождения ряда? Если так, то почему даже с достаточным условием, процент сходимости не приближен к 100? (в методах Якоби и Зейделя).
Недостаточно оптимизированный код или я что-то упустил?
Преобладание главной диагонали - это достаточное условие сходимости для этих методов, все верно. Чтобы определить процент сходимости, я в программе задавал разные системы уравнений со случайными коэффициентами. Попадались разные системы уравнений: с диагональным преобладанием и без него. Поэтому сходились не все системы уравнений даже, когда пробовал переставлять уравнения местами.
@@learningmeansdoing понял, спасибо
Могли получится матрицы не имеющие решения, забыл ка кони называются - но ранг матрицы свободных коэффециентов у таких систем ниже чем размер матрицы (определитель будет равен нулю).
2:45
Спасибо большое за видео. Никак не получается написать программу, не могу найти функцию L, у вас она вроде в начале написана, где вы не показываете, можно будет как-то посмотреть?
Функция L выглядит так:
def L(A, x, i):
L = 0
for k in range(len(A)):
L += A[i][k] * x[k]
return L
А можете скинуть программу в питон для метода Якоби и Зейделя?
капец мужик умный