What is Least Squares?

Поделиться
HTML-код
  • Опубликовано: 4 фев 2025

Комментарии • 31

  • @randolfshemhusain2298
    @randolfshemhusain2298 11 месяцев назад +25

    Visual learning makes things so much better.

  • @mymanager3662
    @mymanager3662 2 года назад +20

    excellent animation and explanation, simple to follow and understand!

  • @SwanPrncss
    @SwanPrncss 2 года назад +8

    Omg, your explanation is better than other youtube videos and my teacher because I'm a visual learner.

  • @plep-m555ww
    @plep-m555ww Год назад +4

    Great video and helpful channel! Khan academy and the organic chemistry guy are getting old and less helpful as school curriculums develop. Super grateful for these simple, direct explanations

  • @mhd112211
    @mhd112211 11 месяцев назад

    Thanks a lot, I have the curse of being a visual learner and this was amazing.

  • @MultiJx2
    @MultiJx2 Год назад +2

    compact and thorough at the same time. thanks !

  • @raminbohlouli1969
    @raminbohlouli1969 Год назад +3

    Simple yet extremely informative👍

  • @shreyapatil5814
    @shreyapatil5814 4 месяца назад

    Very good, finally understand how that best fit line we get!!

  • @anshisingh1915
    @anshisingh1915 Год назад

    lovely brooo, such good animation, now i have the concept in my head.

  • @tonmoysharma5758
    @tonmoysharma5758 2 года назад +2

    Excellent video and also quite easy to understand

  • @funfair-bs7wf
    @funfair-bs7wf Год назад

    This is a great little video !

  • @VictoriaOtunsha
    @VictoriaOtunsha 2 года назад

    Thank you for simplifying this

  • @mesfindelelegn1165
    @mesfindelelegn1165 8 месяцев назад

    clear and brief idea

  • @fabianb.7429
    @fabianb.7429 Год назад

    Just perfect. Thanks

  • @ernstuzhansky
    @ernstuzhansky 2 года назад

    Excellent! Thank you.

  • @rohiniharidas
    @rohiniharidas 2 года назад

    All videos are excellent

  • @tomerweinbach4059
    @tomerweinbach4059 2 года назад

    great explanation!

  • @yoshitha12
    @yoshitha12 Год назад

    Thank you... ❤

  • @ahmedshalaby9343
    @ahmedshalaby9343 Год назад

    in 2 mins just you explained everything

  • @denva2175
    @denva2175 3 месяца назад +1

    you are th beeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeest😭😭💥💥❤❤❤❤💯💯💯

  • @Jkauppa
    @Jkauppa 2 года назад

    fit a function f(x) to data with normal noise, f(x) can be a line, or a polynomial, etc, includes outlier handling, least squares is very sus

    • @Jkauppa
      @Jkauppa 2 года назад

      line with normal noise is a better answer than just a line

    • @Jkauppa
      @Jkauppa 2 года назад

      constant std additive normal noise assumed

    • @Jkauppa
      @Jkauppa 2 года назад

      think like you are removing a base line function from the data points, either linear (like pca, f(x)=kx+c) or polynome (nonlinear pca, f(x)=...+ax^2+bx+c), then checking if the noise is from a normal distribution, ie, trying to make the noise after removing the base line as normal as possible, if you do linear, the noise might not be normal, so you get only a partial pca component fit, kinda

  • @alice20001
    @alice20001 2 года назад +1

    Why use the squares instead of the absolute values?

    • @laraelnourr
      @laraelnourr 2 года назад +1

      because they are easier to compute and deal with mathematically. But we can use absolute values too!

    • @Rashidiill
      @Rashidiill Год назад

      because it gives more clear picture if we have error of ,1 and if we square it it will give 0,01 which is kind of scaled.

    • @AchiragChiragg
      @AchiragChiragg Год назад

      ​@@Rashidiillactually it's the other way around. It's better to use absolute value instead of squares as it can amplify the outliers and influence the final fit.

  • @Keyakina
    @Keyakina 2 года назад

    But residual != error?

  • @rudypieplenbosch6752
    @rudypieplenbosch6752 2 года назад

    no example, pretty useless