A Curious Rational Equation | Problem 371

Поделиться
HTML-код
  • Опубликовано: 11 ноя 2024

Комментарии • 9

  • @ronbannon
    @ronbannon Месяц назад +1

    A quick simplification from basic algebra yields (i)^n = 1; hence, n = 4k, where k is any integer.

  • @mcwulf25
    @mcwulf25 Месяц назад +2

    Multiply top and bottom by (1+2i) and you get 5i/5 inside the brackets, or just i. So i^4k = 1.

  • @seanfraser3125
    @seanfraser3125 Месяц назад +3

    2+i = i(-2i + 1) = i(1-2i)
    So (2+i/1-2i) = i(1-2i)/(1-2i) = i
    We thus have i^n = 1, giving the solution n=4k where k is any integer.

  • @key_board_x
    @key_board_x Месяц назад +1

    [(2 + i)/(1 - 2i)]^(n) = 1
    [(2 + i).(1 + 2i)/(1 - 2i).(1 + 2i)]^(n) = 1
    [(2 + 4i + i + 2i²)/(1 - 4i²)]^(n) = 1
    [5i/(1 + 4)]^(n) = 1
    [5i/5]^(n) = 1
    i^(n) = 1
    i^(n) = (- 1) * (- 1) → we know that: i² = - 1
    i^(n) = i² * i²
    i^(n) = i⁴
    n = 4 → but n = 8, n = 8, n = 12 and so on…

  • @scottleung9587
    @scottleung9587 Месяц назад

    Got it!

  • @lawrencejelsma8118
    @lawrencejelsma8118 Месяц назад

    Wow! 😮 Let me tell you about the story in my life when the eye doctor said I was now going to be 4 "i s" ...> ✊🤓👍 (i)^4 makes me "one of a kind!!!" 😂🤣

  • @sdspivey
    @sdspivey Месяц назад

    I answered the problem, where's my million dollars?

  • @walterwen2975
    @walterwen2975 Месяц назад

    A Curious Rational Equation: [(2 + i)/(1 - 2i)]^n = 1; n =?
    (2 + i)/(1 - 2i) = [(2 + i)(1 + 2i)]/[(1 - 2i)(1 + 2i)] = (2 + 2i² + 5i)/(1 - 4i²)
    = (2 - 2 + 5i)/(1 + 4) = (5i)/5 = i, i^n = 1 = i⁴; n = 4
    Answer check:
    [(2 + i)/(1 - 2i)]^n = 1; Confirmed as shown
    Final answer:
    n = 4