Gaussian Process Regression using Scikit-learn (Python)

Поделиться
HTML-код
  • Опубликовано: 2 дек 2024

Комментарии • 21

  • @reetbaidwan
    @reetbaidwan 5 дней назад

    Very helpful video. Thank you so much ❤

  • @broken_arrow1813
    @broken_arrow1813 2 года назад

    Good explanation. It is heartwarming to hear a South African accent on a youtube video every now and then. My ML model predicts with a 90% probability that this speaker is from Pretoria.

  • @spambot_gpt7
    @spambot_gpt7 Год назад

    Great video!

  • @Foxion7
    @Foxion7 4 года назад +2

    Do you have a link to your used dataset (the .csv file)?

  • @PehwPehwLasergun
    @PehwPehwLasergun 3 года назад +1

    Could you please give an example of predicting your data set in the future? it would be very helpful to me, thank you ;)

  • @sabbirahmad5472
    @sabbirahmad5472 3 года назад

    Can you please share the dataset? It would be really helpful.

  • @MarceloFerreira-sm8sz
    @MarceloFerreira-sm8sz Год назад

    Hi, how do I get error prediction?

  • @NikhilBapat
    @NikhilBapat 4 года назад

    Quite helpful, thanks!

  • @mansoorsyed6232
    @mansoorsyed6232 2 года назад

    What is this to do 10,000 samples we need to write 10000 numerical values this code not very basic to use and understand for sample dataset

  • @Subi_art
    @Subi_art 3 года назад

    can we use this code for gaussian process classification?

    • @MeshRoun
      @MeshRoun 3 года назад +1

      Absolutely.

  • @allaboutbts5204
    @allaboutbts5204 3 года назад

    Hi can you share code file?

  • @gofishiscool
    @gofishiscool 4 года назад

    Hello, this was a great tutorial and I really appreciate the help. I am wondering what np.random.seed(1) is used for within this code? Any explanation would be great! Thank you!

    • @bL4ckGeniu5
      @bL4ckGeniu5 4 года назад

      you set a random.seed to get the same "random" values every time you run the code. Otherwise results won't be comparable.

  • @boriaify
    @boriaify 3 года назад +1

    Line 32: instead of writing down the whole list you can do: [float(x) for x in range(0, 178)] - much simpler

  • @dibyendusardar5947
    @dibyendusardar5947 3 года назад

    Hello i am a phd student. Recently I am learing the gaussian process regression and I also follows your discussion. can we communicate each other as i need a help from you for some points

    • @swarnendusekharghosh9539
      @swarnendusekharghosh9539 3 года назад

      Hello dibyendu i am phd student too and i have started working on GPR from last 6 months it will be great if we can get in touch for discussion .

    • @dibyendusardar5947
      @dibyendusardar5947 3 года назад

      @@swarnendusekharghosh9539 we can communicate through email if you want!

    • @coryreedrobbins
      @coryreedrobbins 3 года назад

      I'm trying to learn this stuff too - engineer here. Have you guys found any interesting resources?

    • @swarnendusekharghosh9539
      @swarnendusekharghosh9539 3 года назад +2

      @@coryreedrobbins Hey Cory you can surely check out the Gaussian process lectures of Nando De Freitas ( ruclips.net/video/MfHKW5z-OOA/видео.html) they can help you get a really good idea. The playlist of the machine learning course is pretty good actually. I had taken the above-mentioned Udemy course for my own understanding it gives you a fairly good intuition too as a beginner-level course. It is a bit hard to understand GPR from research papers, do read the book of Rasmussen and Williams and can also refer to this particular blog of Martin Krasser (krasserm.github.io/2018/03/19/gaussian-processes/) and can check out some videos of GPSS, the summer school of Sheffield university is pretty good too.

    • @footballsurvey8097
      @footballsurvey8097 2 года назад

      Hello