Coding gaussian process regressors FROM SCRATCH in python

Поделиться
HTML-код
  • Опубликовано: 11 янв 2025

Комментарии • 37

  • @reallyanotheruser7290
    @reallyanotheruser7290 2 года назад +6

    Out of what feels like two dozen tutorials and explanations i found this is actually what made me understand it

  • @OliverJanShD
    @OliverJanShD 2 года назад +9

    This is amazing! Thank you for providing this approach, it really helped me understand GPR a lot better

  • @youngzproduction7498
    @youngzproduction7498 2 года назад +1

    This is a solid gold for me. I like learning anything in a visual way which I can interact with it. Thanks for your effort.

  • @33gbm
    @33gbm Год назад

    Excellent material you provided here; I just came back to the video to congratulate your efforts on the content hahaha Thank you, man!

  • @muhammadrayyan4389
    @muhammadrayyan4389 2 года назад

    You are amazing!!!....thanks for helping me in studying for my Green Light meeting which is due in less than 2 days!!!!..this video gave me a great confidence!!!!...once again thank you very much!!!!!

  • @ross302ci
    @ross302ci 2 года назад +2

    Extremely helpful for understanding GPRs, thank you!

  • @TaylorSparks
    @TaylorSparks 2 года назад +2

    underrated video! Thanks for making this great content. This helped me quite a bit as I prepared a lecture on this topic for my materials science students.

  • @satadrudas3675
    @satadrudas3675 2 года назад +1

    This is so underrated. Good job anyway

  • @umutkorkut8555
    @umutkorkut8555 2 года назад +2

    Very cool and easily digestible content, loved it!

  • @eva__4380
    @eva__4380 Год назад

    This was really helpfull for me in understanding GP thankyou so much for your efforts

  • @amothe83
    @amothe83 2 года назад

    Excellent , the best video on gaussian process regressors

  • @komuna5984
    @komuna5984 2 года назад

    Absolutely Mindblowing Work! Keep it up. May Allah bless you. 🙂

  • @swisscheese9590
    @swisscheese9590 2 года назад +2

    Great video. Would you do a follow-up on hyperparameter optimization using marginal log-likelihood in the loss function?
    Also, a visualization example using multi-input GPs would be interesting as well. Or multi-output GPs.

  • @brendarang7052
    @brendarang7052 2 года назад +2

    Nice one! Thank you.

  • @erniwidyawati6254
    @erniwidyawati6254 4 месяца назад

    Can you suggest how to do GPR with poisson likelihood? Should i use approximation for inference like using laplace approximation?

  • @ebrahimfeghhi1777
    @ebrahimfeghhi1777 4 месяца назад

    Great video, thank you!

  • @icoop99
    @icoop99 Год назад

    Very nice video - thank you very much :D

  • @amalroymurali3457
    @amalroymurali3457 2 года назад

    Excellent stuff. Thanks!

  • @azd.zayoud
    @azd.zayoud 2 года назад +2

    Well done!
    # Writing comments would be helpful for beginners
    if it is put in a context of solving a problem/examples :
    it will be more useful.
    Thanks!

  • @pouyaaghaeipour8336
    @pouyaaghaeipour8336 2 года назад +6

    Can we have access to the notebook file?

  • @kaushikgupta1410
    @kaushikgupta1410 2 года назад

    thanks for this amazing explanation

  • @jaimesastre6393
    @jaimesastre6393 2 года назад

    Amazing 👌🙏👌
    Access to the notebook would be great 🙏🙏🙏

    • @nicolaipalm7563
      @nicolaipalm7563 2 года назад +1

      thanks! 😀
      link to the notebook is in the description

  • @MrSchwede91
    @MrSchwede91 2 года назад

    Kommt die Fortsetzung noch? Bisher alles sehr gut beschrieben...

  • @farhadazadi
    @farhadazadi Год назад

    This was fantastic

  • @IvanStar96
    @IvanStar96 2 года назад +1

    Is sigma 0 or 1 in this example?
    The title of the graph says it is 0, but doesn't the code say it equals 1?

  • @junaidlatif2881
    @junaidlatif2881 2 года назад +1

    Can we use your method on our data?

    • @paretos-com
      @paretos-com  2 года назад

      sure! What kind of data is it?

  • @fatismajli2490
    @fatismajli2490 2 года назад

    Nice Video!

  • @yeshuip
    @yeshuip 2 года назад

    hello,
    how to feed sequence of input data to train sequences of outputs

    • @nicolaipalm7563
      @nicolaipalm7563 2 года назад

      With this framework you can feed multidimensional input to the GPR. In order to obtain multi dimensional output you simply train a GPR for each component of the output vector. :)

    • @yeshuip
      @yeshuip 2 года назад

      @@nicolaipalm7563 thanks for the reply.
      but my question was is it possible to feed N*d matrix as input and N*2 aa output. where N represents the input sequence and d represents dimension of features and N as output sequence number and 2 as number of output features

  • @NamNguyen.ee2
    @NamNguyen.ee2 7 месяцев назад

    Thank you so much!