A Nice Math Olympiad Problem (x+2)(x+3)(x+4)=990 | Best Trick... | Math Olympiad

Поделиться
HTML-код
  • Опубликовано: 19 ноя 2024

Комментарии • 3

  • @michaeldoerr5810
    @michaeldoerr5810 Месяц назад

    That is one of the best vids that I have seen. And yhis might be how I tackle other quartic equations!!!

  • @key_board_x
    @key_board_x Месяц назад

    (x + 2).(x + 3).(x + 4) = 990
    (x + 2).(x + 2 + 1).(x + 2 + 2) = 990 → let: y = x + 2
    y.(y + 1).(y + 2) = 990
    y.(y² + 2y + y + 2) = 990
    y.(y² + 3y + 2) = 990
    y³ + 3y² + 2y - 990 = 0 → let: y = p - 1 ← to make item to the 2nd power disappeared
    (p - 1)³ + 3.(p - 1)² + 2.(p - 1) - 990 = 0
    (p - 1)².(p - 1) + 3.(p² - 2p + 1) + 2p - 2 - 990 = 0
    (p² - 2p + 1).(p - 1) + 3p² - 6p + 3 + 2p - 2 - 990 = 0
    p³ - p² - 2p² + 2p + p - 1 + 3p² - 6p + 3 + 2p - 2 - 990 = 0
    p³ - p - 990 = 0
    p³ - p - (1000 - 10) = 0
    p³ - p - 1000 + 10 = 0
    p³ - 1000 - p + 10 = 0
    (p³ - 10³) - (p - 10) = 0 → recall: a³ - b³ = (a - b).(a² + ab + b²)
    (p - 10).(p² + 10p + 100) - (p - 10) = 0
    (p - 10).[(p² + 10p + 100) - 1] = 0
    (p - 10).(p² + 10p + 100 - 1) = 0
    (p - 10).(p² + 10p + 99) = 0
    First case: (p - 10) = 0
    p - 10 = 0
    p = 10 → recall: y = p - 1
    y = 9 → recall: y = x + 2 → x = y - 2
    x = 7
    Second case: (p² + 10p + 99) = 0
    p² + 10p + 99 = 0
    Δ = 10² - (4 - 99) = 100 - 396 = - 296 = 296i² = 4i² * 74 = (2i)² * 74
    p = (- 10 ± 2i√74)/2
    p = - 5 ± i√74 → recall: y = p - 1
    y = - 6 ± i√74 → recall: x = y - 2
    x = - 8 ± i√74

  • @olocomeu7137
    @olocomeu7137 Месяц назад

    999 or 990???? 😂😂😂😂