Can you find the Radius of the circle? | (3 Methods) |

Поделиться
HTML-код
  • Опубликовано: 22 янв 2025

Комментарии • 73

  • @Piyushkumar100-j3n
    @Piyushkumar100-j3n 8 месяцев назад +5

    Nice explaination❤

    • @PreMath
      @PreMath  8 месяцев назад +2

      Glad you liked it
      Thanks for the feedback ❤️

  • @trumpetbob15
    @trumpetbob15 8 месяцев назад +1

    It was interesting to see Euclid's Theorem right after your second method that basically shows a proof of it using the circle. I've never thought about it and why it works like that before.

    • @PreMath
      @PreMath  8 месяцев назад

      Excellent!
      Thanks for the feedback ❤️

  • @Marcus-y1m
    @Marcus-y1m 8 месяцев назад +1

    strategical solutions , Very amazing . Thanks Sir

    • @PreMath
      @PreMath  8 месяцев назад

      Most welcome dear🌹
      Thanks for the feedback ❤️

  • @jimlocke9320
    @jimlocke9320 8 месяцев назад +1

    For a fourth method, we note that ΔABC and ΔACE are similar by angle - angle (common angle

    • @PreMath
      @PreMath  8 месяцев назад

      Excellent!
      Thanks for the feedback ❤️

  • @hongningsuen1348
    @hongningsuen1348 8 месяцев назад

    Point E is redunctant for solution as shown by the following method using trigonometric ratios:
    1. Right-angled triangle ABC has sides ratios of 5:12:13. (15 and 36 given, 39 found by Pythagoras theorem)
    For angle BAC, sin (BAC) = 5/13, cos(BAC) = 12/5
    2. Angle BOC = 2 x angle BAC (exterior angle of isosceles triangle AOC)
    Hence Sin (BOC) = 2 sin (BAC) cos (BAC) (double angle formula for sin function)
    = (2)(5/13)(12/13) = 120/169
    3. Radius = OC = BC/sin (BOC) = (15)/(120/169) = 169/8.

    • @PreMath
      @PreMath  8 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @AbdulJaleel-rd5ul
    @AbdulJaleel-rd5ul 6 месяцев назад

    For a triangle inscribed in a circle , intersecting chord theorem and Euclid's formula is same.

  • @quigonkenny
    @quigonkenny 8 месяцев назад +2

    Rectangle ABCD:
    A = hw
    540 = 15AB
    AB = 540/15 = 36
    First method:
    Triangle ∆OBC:
    OB² + BC² = CO²
    (36-r)² + 15² = r²
    1296 - 72r + r² + 225 = r²
    72r = 1521
    r = 1521/72 = 169/8 cm
    Second method:
    Extend AB to the circumference at E. Let BE = x. Extend CB to the circumference at F. As ∠OBC = 90°, BF = BC = 15, as if a radius of a circle intersects a chord perpendicularly, it bisects that chord.
    For any two intersecting chords of a circle, the products of their lengths on either side of the intersection point are the same. Thus:
    AB•BE = CB•BF
    36x = 15(15) = 225
    x = 225/36 = 25/4
    AE = AB + BE
    2r = 36 + 25/4 = 169/4
    r = (169/4)/2 = 169/8 cm
    Third method:
    Let G be the point where DC intersects with the circumference. Extend CB to F. As ∠OBC = 90°, BF = BC = 15, as if a radius of a circle intersects a chord perpendicularly, it bisects that chord.
    Draw radius OP so that OP intersects GC perpendicularly at H. By the same rule as above, GH = HC, as OP bisects the chord GC. As ∠OHC = ∠HCB = ∠CBO = 90°, ∠BOH must also equal 90°, and OHCB is a rectangle. Therefore GC = 2OB, as OB = HC = GH.
    Draw diameter GF. As G, F, and C, are point on the circumference and ∠GCF is a 90° angle connecting them all, G and F must be opposite ends of a diameter of the circle. Thus GF and O are collinear.
    Triangle ∆GCF:
    GC² + CF² = GF²
    (2(36-r))² + (2(15))² = (2r)²
    4(36-r)² + 4(15)² = 4(r²)
    (36-r)² + 15² = r²
    1296 - 72r + r² + 225 = r²
    72r = 1521
    r = 1521/72 = 169/8 cm

    • @PreMath
      @PreMath  8 месяцев назад

      Excellent job!
      Thanks for sharing ❤️

  • @ChuzzleFriends
    @ChuzzleFriends 6 месяцев назад

    A = lw
    540 = 15l
    l = 36
    So, the length of rectangle ABCD is 36 cm.
    Draw the radius of ⊙O containing vertex B. Label the point on the circle E. This forms a diameter AE of the circle.
    Extend side CB to another point F on the circle, such that the new segment, CF, is a chord of the circle.
    By the Perpendicular Chord Bisector Theorem, the diameter bisects the chord.
    Because BC = 15 (by the Parallelogram Opposite Sides Theorem), BF = 15 as well. Use the Intersecting Chords Theorem.
    36 * (2r - 36) = 15 * 15
    72r - 1296 = 225
    72r = 1521
    r = 1521/72
    = 169/8
    So, the radius of the circle is 169/8 centimeters (fraction), or 21.125 centimeters (decimal).

  • @phungpham1725
    @phungpham1725 8 месяцев назад +1

    4th approach:
    1/ DC intersects the circle at point F.
    Let DF = x
    By using the tangent theorem:
    DF.DC= sq AD--> x= sq AD/DC= 225/36= 6.25
    If we drop the height FH to the diameter we have AH= x= 6.25
    Notice that the AFCE is a isosceles trapezoid so AH=BE= 6.25
    --> AE= 2r = 36+6.25
    r = 21.125 cm

    • @PreMath
      @PreMath  8 месяцев назад

      Excellent!
      Thanks for sharing ❤️

    • @krishnaramachandran7722
      @krishnaramachandran7722 8 месяцев назад

      When I looked at the rectangle and the tangent DA to the circle, I thought the first method would be the 4th method.

  • @PREPARE_GURU
    @PREPARE_GURU 8 месяцев назад +1

    Sir, I want to know that from where you get these type of questions

    • @PreMath
      @PreMath  8 месяцев назад +1

      Hello dear, we don't have such magic book!
      It takes enormous amount of time for research and planning to prepare quality videos! Thanks for asking❤️

  • @LionelMaxwellCrKohli01237
    @LionelMaxwellCrKohli01237 8 месяцев назад

    Angle at centre is twice than angle at circumference. Simple.

  • @himo3485
    @himo3485 8 месяцев назад +2

    Pythagorean Theorem :
    AB=540/15=36cm
    r²=(36-r)²+15² r²=1296-72r+r²+225 72r=1521 r=21.125cm
    Chords Theorem :
    AB=540/15=36cm
    15*15=36*(2r-36) 225=72r-1296 72r=1521 r=21.125cm

    • @PreMath
      @PreMath  8 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @MrPaulc222
    @MrPaulc222 8 месяцев назад +1

    After looking at the diagram for a while and doing a few calculations in my head I came up with
    15*15 = 36(2r - 36) as intersecting chords.
    225 = 72r - 1296
    1521 = 72r
    They both divide by 3 so 24r = 507
    Again: 8r = 169
    So r= 169/8
    That is 21 and 1/8 so 21.125
    This shows me that even if something looks slightly complex, it is sometimes possible to work without a calculator

    • @PreMath
      @PreMath  8 месяцев назад +1

      Excellent job!
      Thanks for the feedback ❤️

  • @alster724
    @alster724 8 месяцев назад +1

    Straightforward problem

    • @PreMath
      @PreMath  8 месяцев назад

      Excellent!
      Thanks for the feedback ❤️

  • @spelunkerd
    @spelunkerd 8 месяцев назад

    For some reason I always choose the longest path to the solution, or at least the only one needing a calculator. In this case I found angle BAC from arctan (15/36). From the inscribed angle theorem I knew angle EOC is double that angle, exactly the same as angle BOC. I calculated OC to be 15/(sin(angle BOC)).

  • @marcgriselhubert3915
    @marcgriselhubert3915 8 месяцев назад

    Let'a use an orthonormal, center P (the center of the rectangle), first axis parallel to (AB). O is the intersection of (AB) and of the mediatrice Delta of [A,C].
    VectorAC(36; 15) is orthogonal to Delta and Delta contains P, the equation of Delta is then 36.x +15.y = 0, or 12.x + 5.y = 0.
    The equation of (AB) is y = -15/2, then we have O(-15/2; 25/8). Then VectorOC(119/8; 15) and R^2 = OC^2 = 14161/64 + 225 = 28561/64, so R = 169/8.

  • @aljawad
    @aljawad 7 месяцев назад

    I reached the same conclusion when solving the problem using the equation of the circle.

  • @devondevon4366
    @devondevon4366 8 месяцев назад +1

    21.125
    Line AB = 540/15 = 36
    Since AO = the radius= r
    then OB = 36- r
    Let's construct a triangle BC0
    BC=DA =15
    OC= r
    Hence, r^2 = (36-r)^2 + 15^2
    r^2 = 1,296 + r^2 -72r + 225
    r^2 = 1521 + r^2 - 72 r
    0 = 1521 - 72r
    72r = 1521
    r = 1521/72
    r = 21.125 Answer

    • @PreMath
      @PreMath  8 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @sergeyvinns931
    @sergeyvinns931 8 месяцев назад +1

    АВ=540:15=36; АО=ОС=R, OB=36-R, R^2=15^2+(36-R)^2, R^2=225+1296-72R+R^2, 72R=1521, R=21,125!

    • @PreMath
      @PreMath  8 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @CloudBushyMath
    @CloudBushyMath 8 месяцев назад +2

    Cool👍

    • @PreMath
      @PreMath  8 месяцев назад

      Glad to hear that!
      Thanks for the feedback ❤️

  • @hongningsuen1348
    @hongningsuen1348 8 месяцев назад +1

    In case the problem is an MCQ in exam, a quick solution using calculator can be found in 30 seconds:
    1. angle BAC = arc tan (BC/AB) = arc tan (15/36) = 22.62
    2. angle BOC = 2 x angle BAC = 45.24 (exterior angle of triangle)
    3. radius = OC = BC/sin BOC = 15/0.71 = 21.125 = 169/8.

    • @hongningsuen1348
      @hongningsuen1348 8 месяцев назад

      A more formal version of this method:
      1. Triangle ABC has sides ratios of 5:12:13.
      For angle BAC, sin (BAC) = 5/13, cos(BAC) = 12/5
      2. Angle BOC = 2 x angle BAC (exterior angle of isosceles triangle AOC)
      Hence Sin (BOC) = 2 sin (BAC) cos (BAC) (double angle formula for sin function)
      = (2)(5/13)(12/13) = 120/169
      3. Radius = OC = BC/sin (BOC) = (15)/(120/169) = 169/8.

    • @PreMath
      @PreMath  8 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @santiagoarosam430
    @santiagoarosam430 8 месяцев назад +1

    540/15=36=AB
    r^2-(36-r)^2=15^2 ; r=169/8=21,125.
    Gracias y un saludo cordial.

    • @PreMath
      @PreMath  8 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @raya.pawley3563
    @raya.pawley3563 8 месяцев назад +1

    Thank you

    • @PreMath
      @PreMath  8 месяцев назад

      You are very welcome!
      Thanks Raya❤️

  • @unknownidentity2846
    @unknownidentity2846 8 месяцев назад +2

    Let's find the radius:
    .
    ..
    ...
    ....
    .....
    First of all we calculate the length of AB:
    A(ABCD) = AB*AD
    ⇒ AB = A(ABCD)/AD = (540cm²)/(15cm) = 36cm
    Now let AE be the diameter of the circle with B located on AE. According to Thales theorem the triangle ACE is a right triangle, so we can apply the right triangle altitude theorem:
    BC² = AB*BE
    ⇒ BE = BC²/AB = AD²/AB = (15cm)²/(36cm) = (25/4)cm = 6.25cm
    Now we are able to calculate the radius R of the circle:
    R = AE/2 = (AB + BE)/2 = (36cm + 6.25cm)/2 = (42.25cm)/2 = 21.125cm
    Best regards from Germany

    • @PreMath
      @PreMath  8 месяцев назад

      Excellent job!
      Thanks for sharing ❤️

  • @Waldlaeufer70
    @Waldlaeufer70 8 месяцев назад

    4th method:
    Tangent-chord theorem:
    L = 540 cm² / 15 cm = 36 cm
    L * x = 15²
    x = 15² / 36 = 225 / 36 = 6.25 cm
    d = L + x = 36 cm + 6.25 cm = 42.25 cm
    r = d / 2 = 42.25 cm / 2 = 21.125 cm

    • @PreMath
      @PreMath  8 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @giuseppemalaguti435
    @giuseppemalaguti435 8 месяцев назад +1

    AB=36...15^2+(36-r)^2=r^2...r=1521/72=169/8

    • @PreMath
      @PreMath  8 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @AmirgabYT2185
    @AmirgabYT2185 8 месяцев назад +2

    r=21,125

    • @PreMath
      @PreMath  8 месяцев назад +1

      Excellent!
      Thanks for sharing ❤️

  • @wackojacko3962
    @wackojacko3962 8 месяцев назад +1

    So @ 10:12
    CA² = AB × AE
    CE² = EB × AE
    CB² = AB × EB
    🙂

    • @PreMath
      @PreMath  8 месяцев назад +1

      Excellent!
      Thanks for the feedback ❤️

  • @soli9mana-soli4953
    @soli9mana-soli4953 8 месяцев назад

    R^2 = 15^2 + (36 - R)^2
    15*15 = 36*X

    • @conconstantin7454
      @conconstantin7454 8 месяцев назад

      Exactly what I did as well

    • @PreMath
      @PreMath  8 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @prossvay8744
    @prossvay8744 8 месяцев назад +2

    ABCD is rectangle
    so AB=CD ; AD=BC=15
    AB=CD=540/15=36cm
    Let OB=x
    OA=OC=OE=R
    R+x=AB=36
    so x=36-R
    Connect O to C
    In ∆OBC
    OB^2+BC^2=OC^2
    x^2+15^2=R^2
    R^2-x^2=225
    R^2-(36-R)^2=225
    So R=169/8cm=21.125cm.❤❤❤ Best regards.

    • @PreMath
      @PreMath  8 месяцев назад

      Excellent job!
      Thanks for sharing ❤️

  • @grantschiff7544
    @grantschiff7544 8 месяцев назад

    I know 15, so make a quick measuring tape out of paper and done.

    • @PreMath
      @PreMath  8 месяцев назад +1

      Thanks for the feedback ❤️

  • @himadrikhanra7463
    @himadrikhanra7463 7 месяцев назад

    21..?

  • @gelbkehlchen
    @gelbkehlchen 2 месяца назад

    Solution:
    AB = 540/15 = 36.
    Pythagoras: (AB-r)²+15² = r² ⟹
    (36-r)²+15² = r² ⟹
    1296-72r+r²+225 = r² |-r²+72r ⟹
    1521 = 72r |/72 ⟹
    r = 1521/72 = 169/8

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 8 месяцев назад

    1) AB = 540 / 15 ; AB = 36 cm
    2) OA = R
    3) OB = (36 - R)
    4) OC = OA = R
    5) Pink Rectangle Area = 540 Sq cm
    6) Let the Point E be the a Vertical Line passing through O and intersecting Line CD.
    7) OC^2 = BC^2 + OB^2
    8) R^2 = 15^2 + (36 - R)^2
    9) R^2 = 225 + 1.296 - 72R + R^2
    10) 1.521 - 72R = 0
    11) 72R = 1.521
    12) R = 1.521 / 72 ; R = 507 / 24 ; R = 169 / 8 cm ; R = 21,125 cm
    13) ANSWER : The Radius of the Circle is equal to 169/8 Cm or equal to 21,125 Cm.

    • @PreMath
      @PreMath  8 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @kalavenkataraman4445
    @kalavenkataraman4445 8 месяцев назад +1

    21.125

    • @PreMath
      @PreMath  8 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @jimwhalen5675
    @jimwhalen5675 8 месяцев назад

    First present the problem clearly and cogentlynwith proper.description

    • @PreMath
      @PreMath  8 месяцев назад

      Thanks for the feedback ❤️

  • @riteshkumar8152
    @riteshkumar8152 8 месяцев назад +1

    First comment

    • @PreMath
      @PreMath  8 месяцев назад

      Excellent!
      Thanks dear❤️

  • @joiceroosita5317
    @joiceroosita5317 8 месяцев назад

    Its too easy..

    • @PreMath
      @PreMath  8 месяцев назад

      Thanks ❤️

  • @devondevon4366
    @devondevon4366 8 месяцев назад +1

    21.125

    • @PreMath
      @PreMath  8 месяцев назад

      Excellent!
      Thanks for sharing ❤️