Triangle inscribed in a circle | 3 Different Methods to Find the Radius of the Circle

Поделиться
HTML-код
  • Опубликовано: 22 янв 2025

Комментарии • 33

  • @adgf1x
    @adgf1x 4 месяца назад +2

    R=abc/4.ar.triangle

  • @prime423
    @prime423 9 месяцев назад

    A weapon in any Mathlete tool kit is the relationship between the radius of the inscribed or circumscribed circle to the Area of the triangle. Any well instructed Mathlete would use the applicable formula. It is an easy solve!!

  • @Abdelfattah-hr8tt
    @Abdelfattah-hr8tt Месяц назад

    Merci from Morocco

  • @mohabatkhanmalak1161
    @mohabatkhanmalak1161 11 месяцев назад

    Thank you, enjoyed the three methods, especially the last one which is a formula with 'delta'. In practice like in engineering we come across these sort of problems often like the reverse case so this is helpfull.

  • @jayprakashpatel2663
    @jayprakashpatel2663 9 месяцев назад +2

    3rd one is actually less time consuming and the good one

  • @MarieAnne.
    @MarieAnne. 11 месяцев назад

    I really liked the first method.
    In second method, once we find cos θ = 11/21, we can then calculate
    sin θ = √(1−(11/21)²) = √(1−121/441) = √(320/441) = 8√5/21
    Then in △OBC, we can drop perpendicular from O to D on line BC.
    Since △OBC is isosceles, OD bisect both BC and ∠BOC, and we get two congruent right triangles
    △OBD ≅ △OCD with
    OB = OC = R
    BD = CD = 8/2 = 4
    ∠BOD = ∠COD = θ
    In △OBD we get
    sin θ = BD/OB
    8√5/21 = 4/R
    R = 4 * 21/(8√5)
    *R = 21/(2√5)*

  • @edwinpittomvils2570
    @edwinpittomvils2570 5 месяцев назад

    Apply cosinus rule to ABC, this gives cos(B)=2/7 and sin(B)=3.sqrt(5)/7. Set B(0,0), O(4,h) then A(2,3.sqrt(5)). You get R out of R^2=|OB|^2=|OA|^2

  • @sebrosacademy
    @sebrosacademy 5 месяцев назад

    keep going . Great job

  • @lukaskamin755
    @lukaskamin755 9 месяцев назад

    6:06 ша the point is on the same side from the horde AC. otherwise they add up to 180 degrees (or Pi radians)

  • @nunoalexandre6408
    @nunoalexandre6408 11 месяцев назад +1

    Love it!!!!!!!!!!!!!

  • @prime423
    @prime423 10 месяцев назад

    This is a very well problem with a formula for its solution. One needs to find the area and then apply formula.

  • @devkrishna4769
    @devkrishna4769 11 месяцев назад

    great video!

  • @RAG981
    @RAG981 11 месяцев назад

    No need to use Cosine formula in last part ( from 13 min), nor find cos 2theta Halve the triangle OBC to give sin theta = 4/r. Sin theta is 8rt5/21, so find r.

  • @jeanlismonde8718
    @jeanlismonde8718 11 месяцев назад

    tu calcules le demi périmètre p du triangle soit 12 et tu utilises la relation entre surface S et les longueurs des côtés a, b, et c
    soit 4R.S= abc avec R le rayon du cercle circonscrit au triangle; tu calcules S avec la formule de Héron soit S = rac[p(p-a)(p-b)(p-c)]
    tu trouves S = rac(5)/4 et tu sais que R = abc/4S soit R = rac(5)/4

  • @soli9mana-soli4953
    @soli9mana-soli4953 11 месяцев назад

    There are other possible methods I can't say if better than those shown, but
    1) in your first method, once found that X = 2 than
    BD = 2, DC = 6, AD = 3√ 5,
    we can extend AD untill E, the intersection with the circle, and with intersecting chords theorem find DE in this way:
    BD*DC = AD*DE
    2*6 = 3√ 5*DE
    DE = 4/5√ 5, and knowing that:
    4r² = BD² + DC² + AD² + DE²
    4r² = 2² + 6² + (3√ 5)² + (4/5√ 5)²= 441/5
    r = 21/2√ 5
    2) In your 3th method once known the area of ABC = 12√ 5 with Heron's formula, we can calculate sin(theta) in this way:
    7*8*1/2*sin(theta) = 12√ 5
    sin(theta) = 3/7√ 5
    from sines law we know that:
    2r = AC/sin(theta) = 9/(3/7√ 5)
    r = 21/2√ 5 again...

  • @giuseppemalaguti435
    @giuseppemalaguti435 11 месяцев назад +5

    R=ABC/4S=7*8*9/4*12√5=21/2√5

    • @Hot_Rock
      @Hot_Rock 11 месяцев назад +1

      You need to prove your figures . Don’t just apply the laws or rules from math books.

    • @josleurs4345
      @josleurs4345 11 месяцев назад

      @@Hot_Rock depends just how far you will go ... in proof of known things :)

  • @albertybermudez7454
    @albertybermudez7454 11 месяцев назад +1

    Mas sencillo: buscar el coseno del ángulo en A y desde el centro perpendicular a 8 que divide en dos triángulos iguales y el ángulo que se opone a 4 también es igual al ángulo en A. Lo demás es sencillo

  • @boriskurenkov4977
    @boriskurenkov4977 9 месяцев назад

    second part of the second method would be more simple if one looks at the fact that center O lies on the perpendicular on the middle of relevant side of the triangle

  • @holyshit922
    @holyshit922 11 месяцев назад

    Cosine law for cosine of an angle
    Pythagorean trigonometric identinty to get sine from cosine
    Sine law for radius
    In second method cos(2theta) and second cosine rule is not necessary
    We have isosceles triangle so if we know theta we know all angles in triangle BOC
    If we drop perpendicular from O to BC we will bicect both angle BOC and side BC
    just because we have isosceles triangle and central angle theorem
    Now cos(90-theta) = 4/R

  • @boryafod1370
    @boryafod1370 7 месяцев назад

    Через площадь S=sqrt[p(p-a)(p-b)(p-c)] = abc/(4R), где p - полупериметр.

  • @tarunmnair
    @tarunmnair 11 месяцев назад

    R can be rationalised as 21.sqrt(5)/10 ...

  • @aromaclinic4112
    @aromaclinic4112 8 часов назад

    cos∠A=11/21
    sin∠A=8√5/21
    2R=8/sinA
    R=(21/10)*√5

  • @adgf1x
    @adgf1x 11 месяцев назад +1

    radius=5^1/2 unit

  • @josleurs4345
    @josleurs4345 11 месяцев назад

    Why not cos rule , and then sin rule because Sine rule van be used tô find radius because a/sin = 2 R ... easy like that ....

  • @adgf1x
    @adgf1x Месяц назад

    R=2.1×5^0.5=4.83appx.

  • @КатяРыбакова-ш2д
    @КатяРыбакова-ш2д 10 месяцев назад

    2,1*V5

  • @НаиляНаипова
    @НаиляНаипова 11 месяцев назад

    А не проще применить теорему синусов

  • @murvetaykac7041
    @murvetaykac7041 8 месяцев назад

    We can solve this problema using areas ofyringler formula.The first one is A=a.b.c/4R the second is A= (u.(u-a).(u-b).(u-c))1/2 2u=8+9+7=24 ..u=12 when we make all this operations we find R=21/2.5^1/2.Thank you telling us lots of formulas.good days.

  • @martinspeer262
    @martinspeer262 11 месяцев назад

    Thales Theorem

  • @hosseinek8070
    @hosseinek8070 11 месяцев назад

    Broooooo why enistein. Your boosting mathematics for god sakes